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ITERATED OSCILLATION TESTS FOR DIFFERENCE EQUATIONS WITH
VARIABLE COEFFICIENTS

ABSTRACT

In this thesis, we will reconsider the significant results on oscillation and
nonoscillation of solutions of an important class of difference equations with variable
coefficients in the literature and we will examine them with numerical examples.
Later, we will give our new result for the oscillation of delay difference equations
with variable coefficients and we will reinforce the importance of our result with an
example where to the best of our knowledge all the oscillation results in the literature
fail to give a positive answer. Lastly, we will state some of the other well-known
iterative results on oscillation of solutions of delay difference equations to make our

final comments.

Keywords: Oscillation, nonoscillation, delay difference equations
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DEGISKEN KATSAYILI FARK DENKLEMLERIN SALINIMI iCiN
YINELEMELI SALINIM TESTLERI

0z

Bu tezde, literatiirdeki degisken katsayili fark denklemlerin onemli bir sinifinin
¢ozlimlerinin salimimli ve salinimsizligina iliskin 6nemli sonuglar1 yeniden ele
alacagiz ve sayisal ornekler tizerinden inceleyecegiz. Daha sonra degisken katsayili
gecikmeli fark denklemlerin salinimi i¢in yeni sonucumuzu verecegiz ve
sonucumuzun Onemini bildigimiz kadariyla literatiirde daha onceki higbir sonucun
olumlu cevap veremedigi bir sayisal drnekle pekistirecegiz. Son olarak, gecikmeli
fark denklemlerin ¢6ziimlerinin salinimi igin bilinen diger yinelemeli sonuglardan

bazilarmi son agiklamalarimizi yapmak i¢in ifade edecegiz.

Anahtar kelimeler: Salinim, salinimsizlik, gecikmeli fark denklemleri
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CHAPTER ONE
INTRODUCTION

Ordinary difference equations have powerful outcomes and these outcomes help
finding solution of many problems in the natural sciencies like physics, chemistry and
biology. Nowadays, the ordinary difference equations appear in astronomy, mechanics
and engineering. They take role in new inventions in technology, and also sending a
vehicle into space. The most interesting applications of these equations are the theory
of oscillations. For these results, today finding the new results in difference equations

and its applications occupy an important place in mathematics.

Definition 1.0.1. The difference equation of order (T + 1) is in the form of
z(n+1) = f(n,z(n),z(n—1),--+ ,x(n—7)) forn=0,1,-

for a given function f € C(Ng x R™™ R) and 7 € Ny, where Ny := {0,1,---}

Example 1. Fibonacci first described his famous number sequence as the solution to
a math problem: If a pair of rabbits are put together under certain conditions (no
rabbits may leave the field), how many will there be in one year? This puzzle, posed by

Fibonacci in the 13th-century, is the premise for Gravett’s book.

A pair of rabbits does not breed until they are 2 months old. After they are 2 months old,
each pair of rabbits produces another pair each month.Therefore, In the first month,
there is 1 pair of rabbit. In the second month, that pair of rabbits mate, there is still
1 pair of rabbit. In the third month, there are 2 pairs of rabbits where one of them is
newborn pair of rabbit and the old ones mate again. In the fourth month, there are 3
pairs of rabbits where the newborn pair of rabbits are produced because of mating of
original pair at last month. In the (n + 1)-st month, the number of pairs of rabbits are
equal to the number of pairs in previous month i.e. the number of pairs in n-th month
plus the number of pairs before the previous month i.e. the number of pairs in (n—1)-st

month. Therefore, the mathematical formulation for the number of rabbits is

zn+1)=z(n)+xz(n—-1), n=01---. (1.1)



Definition 1.0.2. The linear difference equation of order (T + 1) is in the form of

po(n)z(n+1)+pi(n)x(n)+- - +pry1(n)x(n—7) = q(n), po(n)pr41(n) # 0. (1.2)

The equation (1.2) is called an equation with constant coefficients, if the constants
po(n), -+ ,prr1(n) do not depend on n. Otherwise, it is called an equation with
variables. If q(n) = 0, then the equation (1.2) is homogenous. Otherwise, the

equation (1.2) is nonhomogenous.

Example 2. Eq. (1.1) in Example 1, is the second-order homogenous difference

equation with constant coefficients while the equation
zn+1)=n-1Dzn)+z(n—-1)+2", n=01,---

is the second-order nonhomogenous difference equation with variable coefficients.

Definition 1.0.3. 4 sequence {x(n)} for which (1.2) is satisfied for n = 0,1,--- is
called a solution of (1.2). It is known that for prescribed values py, o1, , @, (1.2)

admits a unique solution {x(n)} satisfying v(—j) = ¢ for j =0,1,--- | 7.

Example 3. Eq. (1.1) has the solution

x(n)201<1+\/5> +02<1_\/5) forn=—-1,0,---,

2 2

where ¢, and cy can be any real number. With the initial values ©(—1) = 1 and x(0) =

1, we have a unique solution

z(n)

5435 (1+VE) L 5-3V5(1-V5
10 2 * 10 2

) forn=-1,0,---

Precisely, we have

{z(m)}={ 1,1, 2,3, 5, 8 13,21, 34, --}.
z(=1) z(0) =z(1) =z(2) =z3) =z(4) z(5) z(6) =((7)

In this thesis, we advance a recent oscillation test for the oscillation of the delay



difference equation
z(n+1)—z(n)+pn)z(n—7)=0 forn=0,1,---, (1.3)

where {p(n)} C [0,00) and 7 € Ny.

Definition 1.0.4. 4 solution {x(n)} of (1.3) is said to be eventually positive if
sup{n : z(n) <0} < occ.

Otherwise, if
sup{n : z(n) >0} < oo,

then {x(n)} is said to be eventually negative. A solution {x(n)} of (1.3), which is

neither eventually positive nor eventually negative is said to be oscillatory.

Example 4. Consider the difference equation

x(n+1)—x(n)—|—2i7x(n—2)20 forn=0,1,---. (1.4)

Note that

z1(n) = (—%)n, za(n) = (;)n and x3(n) = n(§>n forn=—2—1,---

are three solutions of (1.4). Note that the solution {xi(n)} is oscillatory while
{z2(n)} and {x3(n)} are nonoscillatory. Furthermore, the solution satisfying the

initial condition x(—2) = 22, ©(—1) = =35 and x(0) = I3 is

n n+6
x4(n) = (—é) + (g) forn=-2—1,---

Explicitly, we have

(za(n)} = 745 697 793 601 985 217 1753 1319 4825

Ty = 81 7 2437 729 2187 6561° 196837 59049’ 177147 531441’ ’
o N N e N e e N
z4(—2) xa(—1) x4(0) x4(1) $4(2) 4(3) a:4(4) z4(5) 4(6)



which is eventually positive since
1" [/2\"°
sup{n : z4(n) <0} = sup{n : (—§> + (§) < 0} =3 < o0.

In the last few decades, the oscillatory character and the existence of positive
solutions of difference equations with several deviating arguments have been
extensively studied, see, for example, papers Erbe & Zhang (1989), Ladas et al.
(1989a,b), Ladas (1991), Gy6ri & Ladas (1991), Yu et al. (1994), Chen & Yu (1995),
Tang & Yu (1999a,b), Tabor (2003), Berezansky & Braverman (2006), Chatzarakis &
Stavroulakis (2006), Bohner et al. (2008), Chatzarakis et al. (2008), Malygina &
Chudinov (2013), Karpuz (2017) and references cited therein. Our results will cover

the general discussion in the mentioned references and complement them.



CHAPTER TWO
RESULTS IN THE LITERATURE

In this section, for the sake of convenience, we will quote some related results on

the oscillation and nonoscillation of solutions to (1.3).

2.1 Preparatory Results

Before we give the proof of Theorem 2.2.3, we need the following lemma.

Lemma 2.1.1. Assume that

n—1
limsup Y p(j) > 0. (2.1)

n—oo .
j=n—T

Let {x(n)} be a nonoscillatory solution of (1.3). Then,

liming 2 =7 _

Proof. Consider, in view of (3.3), there exist an increasing divergent sequence {ny }

and a constant € > 0 such that

N TLk—l
> opG)= > pj)=e forallk. (22)
j=ng—T Jj=ng—T

Define n; to be the number between (nj, — 7) and ny, such that

ny—1 ny
N € N E
| E p(j) < 5 and | E p(y) > 3 for all k, (2.3)
j=n—r j=ng—r

where we adopt the convention that sum over empty set is zero. Clearly, such a number

exists. By (2.2) and (2.3), we get

ng ng ny—1
g g
‘ - 1) — ] > _—— = — . .
]Z* p(j) j > o) j > pl)ze—5 =5 forallk 2.4)
=n} =nE—T =np—T



From Eq. (1.3), (2.3) and eventually nonincreasing nature of {z(n)}, we have for all k

that
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Hence,

%x(n}; —71) <z(np—7) forallk. (2.5)

Similarly, from Eq. (1.3) and (2.4), we get for all k£ that

Nk

ol +1) —a(np) = Y [e(j +1) = 2())]

j=nj
ng
= = > i)l —7)
j=ni
ng
< - (Z p(i)) z(ng =)
j=nj,
< — Calng—7),
and so
%m(nk ~ ) <ax(nl) forall k. (2.6)

From (2.5) and (2.6), we find that

2
(%) x(ny;, — 1) < x(n;) forallk,

1.€.,

92\ 2
——= < (g) for all k. 2.7)



Then, (2.7) implies,

limint 2= T) o

and the proof is complete. ]

Before giving the proof of Theorem 2.2.5 (i), we need the following lemma.

Lemma 2.1.2. If (2.28) holds, then

n l
lim sup z_fgfflgz{ (jl_Tp(j)> (j;lp(j)> } >0 (2.8)

limsup Y p(j) > L. (2.9)

or

Proof. We can find Ny € Nand po > 1 such that + [T"___[1+ Ap(j)] > po for all

Jj=n—T1

A > 1and n > N;. Now, fix some Ay > 1 such that \; > ﬁ Then, we have

n

(12 5000) " = (g S o)

j=n—1 j=n—T1

> [ [+ Xop()] = Aogto,

j=n—r

for n > Ny, where we have applied the inequality of arithmetic and geometric means.
n - _1

Then, we have Y7 p(j) > e forn > Ny, where ¢ := T ((Aopo) ™1 — 1) > 0.

Thus, max,,_,<;<.{p(j)} > =55 forn > Ni. Let {n;}72, be an increasing sequence

of integers satisfying p(n) > =5 for k = 1,2, ---. Now, consider the following two

possible cases.

ng—1
j=np—7 P

nmsup[( > p<j>>p<nk>] -0

k—o0 T
J=ng—T

Case 1. Letlimsup, , > (7) > 0. Then, (2.8) immediately follows from

ng—1
J=ng—T

Case 2. Let limsup,_,. > () = 0. Then, each of the term of the sum tends



to0as k — oo, i.e. limy_ o H"kil [1 4+ Aop(j)] = 1. Thus,

J=ng—T

k—o00 0 k—o00 0

liminf()\i[l + )\op(nk)]) = lim inf()\i ﬁ 1+ )\Op(j)]) > o,

J=ng—T

which yields lim infy,_, o, p(ng) > po — /\lo > 1, i.e., (2.9) holds. Therefore, the proof

is complete. 0

2.2 Main Results

To the best of our knowledge, one of the first results in this subject is given by

L. H. Erbe and B. G. Zhang in 1989.
Theorem 2.2.1 ((Erbe & Zhang, 1989, Theorems 2.2 and 2.3)). (i) Assume that

TT

lin%glfﬂ”) > s (2.10)
Then, every solution of (1.3) oscillates.
(ii) Assume that
p(n) < (7_+T—;)T+1 for all large n. (2.11)

Then, (1.3) has an eventually positive solution.

Proof. (1) Assume for the sake of contradiction that, there exists an eventually
positive solution {z(n)} of (1.3). Suppose that x(n) > 0 for n > N;, where N; € N

is sufficiently large. Let w(n) := wzfi)l) > 1 for n > Nj. Dividing (1.3) by z(n), we

have

——=1—pn)wn—71)---wn-—1), n> Ny, (2.12)

where Ny > N; + 7. From (2.12), we have p(n) > 0 for n > N,. Thus, {z(n)} is
nonincreasing on { Ny, Ny + 1,---}, and so, w(n) > 1 forn > N,. Also {p(n)} is

bounded above. Otherwise, from (2.10) and (2.12), we get w(n) < 0 for all arbitrarily



large n. If we set w, := liminf,_,., w(n), then from (2.12), we have

1 1
lirrlrls:jpm e 1 - linnl(igf{p(n)w(n —7)-wln—1)}

< 1—w] liminfp(n).
n—oo

Thus, we have

. wy — 1
< -
lim nfp(r) < e
Since max, > { 2=+ } = & JSTH , we have
lim inf < 7"
iminfp(n) < -y
which contradicts with (2.10).
(i1)) We will show that
! 1 (n)w( ) ( 1) f > N (2.13)
- = . — 00 g h__ or .
W) p(n)w(n — 7 w(n n > Ny,

where N; € N is sufficiently large, has a positive solution. For this purpose, we define

1
T s N1—7§n<N1
stn)y==4 T ' (2.14)
n > Nl-

1—pn)stn—7)---s(n—1)

From (2.13) and (2.14), it follows that s(N;) < ZtL. So, we define

1 <’T+1.

S(N1+1):1_p(Nl_|_1)S(N1_|_1_7—)...3(N1)_ T

By induction, 1 < s(n) < 7t forn > N; and k > 1. Thus, {s(n)} satisfies (2.13) on
{N1, Ny +1,--- }. Next, defining

1, Nl — T S n S Nl
z(n) =
x(n—1)
> N
S(TL , N 1,



it follows that {x(n)} satisfies (1.3). O

Remark 1. When there is a single constant coefficient, the equation

m

x(n—i—l)—x(n)—i—ijx(n—Tj) =0 forn=0,1,---,

J=1

where p; € Rt := (0,00) and 7; € Ny for j = 1,2,--- ,m, in (Ladas et al., 1989a,

Theorem 1) reads as
z(n+1)—zn)+prx(n—717)=0 forn=0,1,---, (2.15)
where p € R and T € Ny, whose characteristic equation is
pw—1+pu=" =0. (2.16)

Note that Eq. (2.16) cannot hold if 1 € [1, 00). Further, by simple calculus, we compute

T+1

1
h e 1 h = T74+1 — 1
i, (=14 ph7T} = —— ()T -,
which shows that Eq. (2.16) fails to hold if p > T+1)T+1 and is fulfilled if p < +1)T+1

Therefore, Theorem 2.2.1 extends (Ladas et al., 1989a, Theorem 1) to equations with a

variable coefficient.
Theorem 2.2.2 (Cf. (Erbe & Zhang, 1989, Theorem 2.5)). Assume that there exists an
increasing sequence {ny} of nonnegative integers such that

Nk

> p(G) =1 forallk

Jj=ng—T

Then, every solution of (1.3) oscillates.

Proof. Assume for the sake of contradiction that, there exists an eventually positive
solution {z(n)} of (1.3), i.e., z(n) > 0 for n > Ny, where N; € N is sufficiently
large. Then, z(n —7) > 0 for n > Ny, where Ny := N; + 7. This implies that {z(n)}

is nonincreasing on { N, Ny + 1, - - - }. There exists k; such that ny, > N,. Now, we

10



estimate that

Nk

e+ 1) =2l -1+ 3 [a(i+1) - 2())]

=alu—7)= >, PG - 7)
Sl’(”k—T)(l— Z p(j)) <0

for all £ > k;, which is a contradiction.

Now, we will present two examples to show that Theorem 2.2.1 and Theorem 2.2.2

are not comparable.

Example 5. Consider the equation

0 =n (mod?2)

[

zn+1)—azn)+ x(n—2)=0 forn=0,1,---. (2.17)
5, 1=n(mod2)
We compute that
. 122 4

Thus, Theorem 2.2.1 (i) holds, i.e., every solution of (2.17) oscillates. On the other

hand, we compute that

0 =n (mod2)

[SI] ]

Y

ZPO)Z ?1 forn=0,1,---.

j=n—2 2 1=n(mod2)

This shows that the condition of Theorem 2.2.2 cannot hold for any increasing sequence
{re -

Example 6. Consider the equation

0 =n(mod2)

)

N[ =

z(n+1)—z(n)+ x(n—2)=0 forn=0,1,---. (2.18)

1 =n(mod?2)

L
10°

11



On one hand, we compute that

o 122 4
IR =157 5 = a7

Thus, Theorem 2.2.1 (i) does not hold. On the other hand, we consider

n &, 0=n(mod2)
Z p(j) = forn=0,1,---. (2.19)
j=n—2 =, 1=n(mod2)

By taking n;, = 2k for k € N, we see that (2.19) is equal to %, which is greater than
1. Thus, by Theorem 2.2.2, every solution of (2.18) oscillates.

Theorem 2.2.1 (1) is improved by G. Ladas, Ch. G. Philos and Y. G. Sficas in 1989

by replacing the point-wise condition with the mean of consecutive 7-terms.

Theorem 2.2.3 ((Ladas et al., 1989b, Theorem 1)). Assume that

n—1 7+1
’7—
lim inf ) > . 2.20
im in > p(j) ( 1) (2.20)

j=n—T

Then, every solution of (1.3) oscillates.

Proof of Theorem 2.2.3. Assume to the contrary that {z(n)} is a nonoscillatory
solution of (1.3). Assume that {z(n)} is eventually positive, i.e., z(n),z(n — 7) > 0

for n > Ny, where N, € N is sufficiently large. It follows from (1.3) that

z(n+1) —xz(n) + wn)p(n)x(n) =0, where w(n):=—-=,

12



for n > Nj. It follows that

1

1=, 1 —w(i)p(i)]
1

(1—12 nr w(P())

w(n) =

Z T
(1@ Zj;n_Tp(j))

_ 1 z(n) ,
W 0By ) Y

> ()75 s

j=n—T1

where z(n) := min,_<;<,—1{w(j)} (here, we have used the fact that maxe[o,1{ (1 —
h)’”} < # forr > 0)and n > N;. By Lemma 2.1.1, we see that w, is a positive

number, where w, := liminf,_,. w(n). Note that liminf,_,., 2(n) = w,. Then, we

. 1\ &=
w, > Iggggf{( - ) } Z p(j)ws
J

obtain

or equivalently

T+1
mint 3 000 < ()

_]nT

which is a contradiction. O]

Remark 2. Let us justify that Theorem 2.2.3 improves Theorem 2.2.1 (i). We estimate
that

n—1

imint - 3 05) = limind 1> ptn

]nT

2 13 i )

1 T
== E liminfp(n)
T n—o0

= liminfp(n).

n—o0

This proves that (2.20) improves (2.10).

13



Next, we give an example, where Theorem 2.2.1 and Theorem 2.2.2 fail to apply

but Theorem 2.2.3 does.

Example 7. Consider the equation

:, 0=n(mod2)
z(n+1)—z(n)+ x(n—2)=0 forn=0,1,---. (2.21)
3, 1=n(mod2)
We compute that
o 1, 22 4
MR =5t m T

Thus, Theorem 2.2.1 (i) does not hold. Simply, we have

%, O=n d?2
> i) = prodz) F1 forn=0,1,-.
1 = n(mod2)

j=n—2

That is, the condition of Theorem 2.2.2 cannot hold for any increasing sequence {ny}.

Finally, we compute

which yields

Therefore, by Theorem 2.2.3, every solution of (2.21) oscillates.

Next, J.S. Yu, B.G. Zhang and Z.C. Wang in 1994 explored a very important
approach, which improves the above result by replacing the sum with a product. Their

approach also allowed to prove a new nonoscillation test, which improves

Theorem 2.2.1 (ii).

Theorem 2.2.4 ((Yu et al., 1994, Theorem 1)). (i) Assume that

liminf inf{ — > 1, (2.22)
nooe MM ATz, [ = Ap()]

j=n—T

14



where

A:={A>0: 1—=Xp(n) >0 foralllargen}. (2.23)

Then, every solution of (1.3) oscillates.

(ii) Assume that there exists Ao € A such that

1
Ao HJ —n— T[ — Aop(J)]

<1 foralllargen. (2.24)

Then, (1.3) has an eventually positive solution.

Proof. (i) Assume to the contrary that {z(n)} is a nonoscillatory solution of (1.3).
Assume that z(n), z(n — 7) > 0 for n > Ny, where N; € N is sufficiently large. It
follows from (1.3) that

_ _an—1)
z(n+1) —z(n) +w(n)p(n)x(n) =0, where w(n):= o)
for n > Nj. It follows that
w(n) = —
[T 1 —w(i)p(i)]
. 1
[T [1 = =(n)p(5)]
1
= 1 B Z(”)
z(n) [ T2, [1 — 2(n)p(y)]
1
- ile’f{mj w0 }Z(”)’ 22
where z(n) := min,_,<;<,—1{w(j)} and n > N;. One can show that (2.22) implies
(2.1). Indeed, if (2.1) fails, then lim, . p*(n) = 0, where

p*(n) := max,_.<j<,—1{p(j)}. Thus,

liminf inf ! . < liminf inf !
n—o0 AEA )\HJ e T[l _>\p(.7>] n—o00 AEA )\HJ e T[l _)\p*(n)]

1 T+1
— lim up*(n) =0,

n—oo T7T

15



which contradicts (2.22). It follows from Lemma 2.1.1 that w, is a positive number,
where w, := liminf,,_,,, w(n). Note that liminf,,_,,, 2(n) = w,. Then, from (2.25),

we obtain

Wy,
n—oo AEA

w, > liminf inf{ — 1 . }

or equivalently

liminfinf{ — L } <1,
nmvoe A ATz, (1 = Ap(5)]

j=n—T

which is a contradiction.

(i1) By (2.24), we choose a positive integer N; such that N; > 7 and

n—1
N [T =20 =1, n> N
j=n—T
Define
1, Ni—7<n<N;
y(n) = 1
pow— - s n,Z Aﬁ.
Ao =11 = Aoy (5)p(5)]
Then,
1 1
y(N1) = = —— = - — <1
Mo TN 1= 2ay(GpG)] Ao TT M (1 = Aap(4)]
In general, by induction, we obtain
1
y(n) = — —— <1, n>DN;.
Mo 1=, 11 = Aoy (G)p()]
Thus, {y(n)} is defined. Also, we define
z(n) :=1—=Xy(n)p(n), n > Nj.
Then, z(n) > 0 forn > N; — 7 and
sy =1— =P s (2.26)
IIj:n—T (j)
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Define

1, Ni—17<n<N
z(n) = n—1
H 2(7), n>DNy.
j=N1—1
Then we have by (2.26)
xz(n+1) x(n —7)
DT AN}
)T )
That is,

z(n+1)—z(n)+pn)z(n—7)=0.
Thus, we obtain a positive solution {z(n)} of equation (1.3). O

Remark 3. Let us show that Theorem 2.2.4 (i) improves Theorem 2.2.3. We estimate

by using the inequality of arithmetic-geometric means that

1 1

AT, (1 = Ap(h)] 2 (1— Ay () ))T
1
- <1—AZ] D0 )>T e )

Jj=n—T

_ (le)m S o)

Jj=n—T

for A € A and all large n. This proves that (2.22) improves (2.20).

On the other hand, Theorem 2.2.4 (ii) also improves Theorem 2.2.1 (ii). For
Jjustification, suppose that p(n) < # for all large n. We can find M € R such

that M < +1)T+1’ p(n) < M for all large n, and 1 — \gM > 0, where \g := m
i.e., \o € \. It follows that
o 7" 1
Ao H [1— Nop(i) H 1—ANM]|=————2>1 foralllargen.

(T+ 1)T+1M

1=n—T t=n—T

This proves that (2.24) improves (2.11).
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Example 8. Consider the equation

0 =n (mod2)

=

r(n+1)—az(n)+ x(n—2)=0 forn=0,1,---. (2.27)
5, 1=n(mod2)
We compute that
n-t 2 0=n(mod2) 2
p(]): ! E? fOI"TL:O,17"',
j=n—2 2, 1=n(mod2)
which yields
lim inf "Z—l ()—2} 2y
w2 P57 3)

Thus, Theorem 2.2.3 fails. On the other hand, we compute that A = (0,4) and

——~—~, 0=n(mod2)

A H?;Lz[l — Ap(j)] 1 =n(mod?2)

1 1
inf { }—
e | A(1—2)(1—2) AM1=2)(1-12) NPT

= %(260+43\/E) > 1

forn =0,1,---. That is, by Theorem 2.2.4 (i), every solution of (2.27) oscillates.

Finally, we would like to quote the following results from Karpuz (2017). We will

be confine our attention on the oscillation part of this recent result.

Theorem 2.2.5 ((Karpuz, 2017, Theorems 1 and 2)). (i) Assume that

TN I _
lzrggfirzlt;{x H [1+)\p(])]} > 1. (2.28)
Jj=n—7

18



Then, every solution of (1.3) oscillates.

(ii) Assume that there exists Ao > 1 such that

n

- H [1+ Xop(j)] <1 forall large n.

0 .=
j=n—T

Then, (1.3) has an eventually positive solution.

Now, we present the proof of Theorem 2.2.5.

(2.29)

Proof of Theorem 2.2.5. (i) Assume to the contrary that {z(n)} is a nonoscillatory

solution of (1.3). Assume that z(n),z(n — 7) > 0 for n > Nj, where N; € N is

sufficiently large. By Lemma 3.1.1, (2.9) cannot hold. So, we have to assume (2.8).

Let w(n) := zgz:g for n > N;. Now, we claim that

1 </ :=liminfw(n) < oco.

n—00

Let Ny € N satisfy Ny > Ny + 27. From (1.3), for n > N,, we have
!

rn+1)>zn+1)—2(l-1)= Z —z(j)]

zl: x(j =) Z(Xl: ) (=)

and

x(l—7)>x(l—7')—x(n—|-1):—' [x(j+1) —z(j)]

(S
|
\]
V
N\
3
=
<
S~—
~__
=
3
|
2

: ]:l—'r

where [ satisfies ] — 7 < n + 1 < [. Combining (2.31) and (2.32), we get

1< w(n) < [(2 o)) ( 5 o)) Ttorn > M,

j=n+1

19
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Considering (2.8), we take inferior limit as n — oo in (2.33) after taking minimum

over [ to obtain (2.30). On the other hand, from (1.3), we get

1+ w(n)p(n)lz(n+1) —x(n) =0 forn > Ny

or equivalently

wiy = I 2= T 0+ wlpl)] forn > N,

wn) > ] [0+ w.(n)p(j)] forn > Ny, (2.34)
j=n—r
where
wye(n) = min w(j)>1 forn> N,.
n—1<j<n

Clearly, lim inf,,_, . w,(n) = . Taking inferior limit of both sides of (2.34), we get

¢ > liminf H 14 lp(j)]

n—oo

or equivalently

which contradicts (2.28) since ¢ > 1. Therefore, the proof is complete.

(i) Assume that (2.29) holds for n > N;, where N; € N. Note that, (2.29) implies

for n > N;. Further, by (2.29), we have /\io[l + Aop(j)] < 1 for n > Ny, which yields

20



1 —p(n) > ALO > 0 forn > Ny, ie., 0 < p(n) <1forn > N;. Now, we define

17 N1—7§n<N1

y(n) = L2011+ Aoyl
(1= p(n) TTZE (1 + Aoy (G)p()])

(2.35)

TLZNl

First, we claim that y(n) > 0 for n > N;. Assume the contrary that, y(I) < 0 for
some integer [ > N;. Without loss of generality, we may assume that y(n) > 0 for

Ny — 7 <n < [. Then, we have

T2 [+ Aoy (i)p()]

0= T 0)

> 0,

which is a contradiction. Thus, y(n) > 0 forn > N;—7. Next, we claim that, y(n) < 1
for n > Nj. Assume to the contrary that, (/) > 1 for some integer [ > N;. Without

loss of generality, we may assume that y(n) < 1 for Ny — 7 < n < [. Then, we have

[Tj=ir (1 + Aop(5)]

<
y(l) < No(1 = p(1) TS0, 11+ Aop()])
< HAA—(?p(l) -1

Aop() ’
Ao <1 - 1+(3\I;p(l)>

which is a contradiction. Thus, y(n) < 1 for n > N; — 7. From (2.35), we have

1 T N
= — JI [+ XeyG)p()] forn > Ny (2.36)
0 .~
Finally, we define
n—1 1
x(n) == H — forn>N; —T. (2.37)

ioxs L Aoy(7)p()

We iterate (1.3) in the backwards direction to define z:(n) for —7 < n < N; — 7, i.e.,

~z(n+T1+1) —z(n+7)
p(n+7)

, pln+71)#O0and Ny —7<n < —71
x(n) =

1, p(n+7)=0andn =N, —7<n<—T.
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Clearly, 0 < z(n) < 1forn > N; — 7. By (2.36) and (2.37), we sce that

0=1—[1+Xoy(n)p(n)] + Aoy(n)p(n)

x(n) x(n—1)
B I S
z(n+1) +r(n) z(n+1)
for n > Nj. Thus, z(n) is eventually positive and satisfies (1.3). O

Remark 4. Suppose that (2.28) holds for (2.15), i.e.,

(14+Xp)™™ > 1 forall X > 1. (2.38)

> =

%ﬁ [1+Ap] =

J T

Note that (2.38) trivially holds for 1 > X\ > 0, then

1
X<1 +Ap)"Tt > 1 forall A >0
(14+Xp)™™ >\ forall A\ >0

A+ 1+ A)T >0 forall >0

DA
14+ Ap

—1+p(1+Ap)" >0 forall\>0

+p(l+Ap)" >0 forall x>0

14+ Ap
w—1+pu " >0 foralll >y :=

[ A

>
14+ Ap

i.e., the characteristic equation (2.16) has no roots when 1 > pu > 0. Further, the
characteristic equation (2.16) has no roots in the case ;1 > 1 either since p € R". As
a result, the characteristic equation (2.16) has no positive roots.  Therefore,
Theorem 2.2.5 (i) extends (Ladas et al., 1989a, Theorem 1) to equations with a

variable coefficient.

Remark 5. Theorem 2.2.5 (ii) improves Theorem 2.2.1 (ii). To show this, suppose that
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p(n) < (Tﬁﬁ for all large n. Then, we estimate that

T+1
1 n 1 )\0 -
1 14 A S|t
» JIZI_T[ op(7)] < 3 ( 1 ]zn;p(])>
1 \ " T+1
<—|1 - '
—Ao< =D p@)
TH1Y O
_ < - ) > ()
J=n—1
T+1\T < T
< Gro !
B < T ) jzzn:r (7 + 1)

for all large n. Thus, (2.11) implies (2.29).

From the proof in Remark 5, we can give the following corollary of

Theorem 2.2.5 (ii).

Corollary 2.2.5.1. Assume that

Z p(Jj) §(7_11> Sor all large n.

j=n—T

Then, Eq. (1.3) has a nonoscillatory solution.

Below, we give four examples to illustrate that Theorem 2.2.5(i) and
Theorem 2.2.5 (i1) cannot be compared with Theorem 2.2.4 (i) and Theorem 2.2.4 (i1),
respectively.  The following example includes a numerical equation, where

Theorem 2.2.4 (i) applies but Theorem 2.2.5 (i) fails.

Example 9. Consider the equation

1
6—1, 0 =n (mod 2)

z(n+1)—z(n)+ . x(n—2)=0 forn=0,1,---. (2.39)
o1 1 =n (mod 2)
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We compute that

n—00 )\>1

1 n
liminf 1nf [1 + /\p(j)]}

? 5
(1+)\—>, 0 =n (mod 2)

= liminf inf 9
n—oo A>1 1 17
( (1+)\6—4> , 1 =n (mod2)

, 0=mn (mod 2)
A—28(1/969—17)

: 1 =n (mod 2)
A— 28(705—5)

n—oo

1

A
= liminf

1

)\

(537 + 19v/969), 0= n (mod 2)

= liminf 25360
n—oo
132 4 1= 2
\8704<39+ 7V/705), n (mod 2)
1.3224, 0 =n (mod 2)
~ liminf = (.88819 # 1.
n—oo

0.88819, 1=n (mod?2)
\

Thus, Theorem 2.2.5 (i) does not apply for Eq. (2.39). On the other hand, we have

A = (0,%) and compute that

1 1
lim inf inf . = liminf inf T =
n—oo AeA )\H] ol = Ap(j)] nooo gaa<® | A(1 = A (1—-)22)

1
- )\(1 N /\g) (1 N )\6%) A 24 (22—1/229)
195075

~1.23>1.

128(229v/229 — 2233)

This shows that Theorem 2.2.4 (i) applies for Eq. (2.39), i.e., every solution of Eq. (2.39)

is oscillatory.

The following example includes a numerical equation, where Theorem 2.2.5 (i)

applies but Theorem 2.2.4 (i) fails.
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Example 10. Consider the equation

13_258’ 0 =n (mod 2)
z(n+1)—x(n)+ x(n—1)=0 forn=0,1,---. (2.40)
61
——, 1=n(mod ?2)
265

Note that A := (0, 22) and we compute

lim inf inf pry ! )
n—o00 AEA A Hj:n—l [1 - Ap(])]

1

————— 0=n(mod?2)
61 )
= liminf inf A1 _1ﬁA)
RS |~ 1 =1 (mod?2)
A1 =52
(1 0= n (mod 2) \
_— ,0=n (mo
lim inf /\( _%A) A—128
o A (mod 2
Ay .1 =mn (mod 2
\ )\(1 B %)\) 283 J
(61
o 0 =n (mod 2) 61
= liminf =—#1
&1 1 =n (mod 2)

Thus, Theorem 2.2.4 (i) does not apply for Eq. (2.40). On the other hand, the estimation

1 61 35
14+ ()] b = liminfinfd < (14 A ) (14 22
[1+ p(])]} i &{A( " %5 >( T 128 )}
| 61 35
— (12 )1+ 2
A( +265)\)( +128)\)

1
= %(131 +2v4270) ~ 1.02223 > 1

1
A

J

n—oo A>1

lim inf inf{ H

1

2
A—12 3135

showing that Theorem 2.2.5 (i) applies for Eq. (2.40), i.e., every solution of Eq. (2.40)

is oscillatory.

The following example includes a numerical equation, where Theorem 2.2.4 (ii)

applies but Theorem 2.2.5 (ii) fails.
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Example 11. Consider the equation

%, 0 =n (mod 2)
z(n+1)—x(n)+ 0 x(n—2)=0 forn=0,1,---. (2.41)
)
——, 1=n(mod ?2)
128
We compute that
(1 5 57
n —(1+-—=A)(1+==X], 0=n(mod2)
1 A 12 256
— H 14+ A\p(y)] = 2
/\]:n2 1 1+i)\ 1_1_5_7)\ 1 =n (mod2)
(A 12 256 )7
) 2
—<1+i>\>(1+£)\> , 0=n (mod 2)
2 128 256 ) [\ 32 (v7so9-57)
a 1<1+i)\)2<1+£)\) 1 =n (mod 2)
A\ 128 256/ |xo g4 (viT65-5)

8951 + 137+/7809

= 2

B 50430 , 0=n (mod 2)
9323 + 233+/1165

1= 2

X 29184 ’ "god 2)

(

1.0282, 0 =n (mod 2)

Q

Z1

0.591961, 1 =n (mod 2)
\

forall \ > 1. That is, Theorem 2.2.5 (ii) does not apply for Eq. (2.41). On the other

hand, we see that A := (0, %2), and with N := +, we have

1 1 16777216
NIE ) T EE)( - T | 1meor -

forn =0,1,---. By Theorem 2.2.4 (ii), Eq. (2.41) has a nonoscillatory solution.

The following example includes a numerical equation, where Theorem 2.2.5 (ii)

applies but Theorem 2.2.4 (ii) fails.
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Example 12. Consider the equation

1
6—1, 0 =n (mod 3)
z(n+1)—z(n)+ . x(n—2)=0 forn=0,1,---. (2.42)
i 0 # n (mod 3)
Clearly, A := (0,%) and
1
—7 0 =n (mod 3)
- [1 Ol )
AR L0 = MG
j=n—2 , 0#n (mod3)
(A =250 (1 =A%)
( 1 3
— , 0 =n (mod 3)
A1-2F) | e
> 64 A= 1=
0 # n (mod 3)
—\2 —\r ’
\)\<1 )\64)(1 )\64) )\*}%(227\/@) )
4913
o %, 0=n (mod 3)
r 195075
, 0% n (mod3)
| 128(229v/229 — 2233)
(
0.533, 0 =mn (mod 3)
X9 £ 1
1.237, 0 # n (mod 3)
\

for all X\ > 1. This shows that Theorem 2.2.4 (ii) does not apply for Eq. (2.42).

However, with \g := 5, we compute that

1
Ao

J

|n| 1+ Xop(J)] ! 1+5—17 1+5—5 2 09<1 f 0,1
= — ~ . or n — R
e P = 64 64 = '

Thus, Theorem 2.2.5 (ii), Eq. (2.42) has a nonoscillatory solution.
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CHAPTER THREE
THE ORIGINAL RESULT

In this section, we state our new result on the oscillation of (1.3) and lemmas, which

are required in the proof of the our main result Theorem 3.0.1. The connection between

these three lemmas are interesting on their own.

Theorem 3.0.1. Assume that there exists { € N such that

liminf G,(n) > 1,

n—oo

where
1, k=0

A>1

Pr(n) = v
k mf{§ 11 [1+Aﬂk_1<j>p<j>}}7 keN.

j=n—T

Then, every solution of (1.3) oscillates.

Remark 6. Theorem 3.0.1 with { = 1 covers Theorem 2.2.5 (i).

3.1 Preparatory Results

Lemma 3.1.1. [f (1.3) has a nonoscillatory solution, then

n

Z p(j) <1 forall large n.

j=n—Tt
Proof. The claim follows from Theorem 2.2.2.

Lemma 3.1.2. Assume

j=n—71
and .
lim (p(n) 2 P(J)) =0
j=n—r1
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Then, . i
limsup B (n) < (lim sup » P(J)) fork € N. (3.6)

n— o0 n—00
j=n—r

Proof. 1t follows from (3.5) that

lim (p(n)p(n —j)) =0 forj=1,2,--- 7. (3.7)

n—0o0

By expanding the product in (3.2), we write

Br(n) = g{%(HA > Bema()p() + A’ Z B

Jj=n—1 Jj=n—1

. . (3.8%)
x> Bea(ipli) + -+ X ] Bk_l(j)p(j)>}

i=j+1 j=n—r

where o is the so-called “little-o notation” meaning that the coefficients of A\, A2, - - - | A7

tend to 0 as n — oo. It follows from (3.4) and (3.9) that

lim sup 8, (n) < limsup Z (3.10)

n—oo n—oo
] =Nn—T

i.e., {f1(n)} is bounded. From (3.7), (3.8) with £ = 2 and (3.10), we see that

Ba(n) = gg{i + Z_ Br(7)p(J) +o(L)(A+ -+ + )\7)} for all large n. (3.11)

It follows from (3.10) and (3.11) that

lim sup fB2(n) < limsup Z B1(7)p(7) < M limsup Z ) < M?*, (3.12)

n—0o0 n—oo n—oo .
j =Nn—T J=n—T

i.e., {f#2(n)} is bounded. By induction, we obtain limsup,, . Bx(n) < M* fork € N,
which proves (3.6). [
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Lemma 3.1.3. Let {x(n)} be a nonoscillatory solution of (1.3). If

n—1

limsup (p(n> :Z p(j)> >0,

n—00
J=n—71

then

limint 2 =T
n—00 :p(n + 1)

(3.13)

Proof. Without loss of generality, assume that z(n), x(n — 7) > 0 for n > Ny, where

N; € N is sufficiently large. Then, {z(n)} is nonincreasing on { Ny, Ny +1,---}. In

view of (3.13), there exist an increasing divergent sequence {n} C {Ny, Ny +1,---}

and a constant € > 0 such that

ne—1

p(ng) Z p(j) > e forallk € N.
j:nk—T
It follows from (1.3) that

x(ng) > x(ng) —x(ng + 1) = p(ng)z(ng, — 7) forall k € N.

Also, from (1.3), we have

s = 7) > 2y~ 7) 2l = — 3 [+ 1) — )]
= Y ARG Y en 1)

for all £ € N. Combining (3.14), (3.15) and (3.16) yields

x(nk—1—7)< 1

v : forall k € N,
z(nk) p(ne) 2255, p(j)

<

™ | =

which completes the proof.
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CHAPTER FOUR
THE PROOF

Proof of Theorem 3.0.1. Assume the contrary that {x(n)} is an nonoscillatory solution
of (1.3). Without loss of generality, we suppose that {z(n)} is eventually positive.

Then, there exists N; € N such that x(n) and x(n — 7) are positive for n > N;. By

(1.3), {z(n)} is a nonincreasing sequence on { N1, N1 +1, - - - }. Define w(n) := zgzz;
for n > Nj. Note that w(n) > 1 for n > N;. From (1.3), we write
z(n+1)—z(n)+wn)pn)z(n+1)=0 forn > Ny,
which yields
w(n) = H [1 + w(j)p(j)] forn > N, 4.1)
j=n—T
where Ny := N; + 7. Now, we define
w(n), k=0
zk(n) == (4.2)

min{z; 1(j): j=n—7n—7+1,---,n}, k=1,2---(

forn > Ny. By (4.1), (4.2) with &k = 1 and w(n) > 1 for n > N, it follows that
z1(n) > 1 forn > N3, where N3 := Ny + 7. By (3.2) with k = 1,

w(n) > ‘H [1+ z1(n)p(5)]

I
PN <
KN
S
I
3 3
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forn > Nj. From (4.1) and (4.2) with k£ = 2, we know that z3(n) < z;(n) forn > Ny,
and by definition z5(n) > 1 for n > N, where N, := N3 + 7. By (3.2) with k = 2,

w(n) >

v

for n > N,. By induction, it follows from (3.2) with &k = ¢, (4.1) and (4.2) with k = /¢
that
w(n) > Be(n)zi(n) forn > Nj. (4.3)

where N5 := Ny + 7. By Lemma 3.1.1, Lemma 3.1.2 and Lemma 3.1.3, we obtain
w, := liminf,, . w(n) < oco. Note that liminf,, ., z,(n) = w,. Thus, taking inferior
limits on both sides of (4.3), we get

w, > liminf 5y(n) liminfz,(n)
n—oo n—oo

= liminf 5,(n)w,,
n—oo

which yields liminf,,_,, S¢(n) < 1 contradicting (3.1). This completes the proof. [

In the example below, we will show the importance of Theorem 3.0.1, where
Theorem 2.2.1, Theorem 2.2.3, Theorem 2.2.4 and Theorem 2.2.5 cannot deliver an
answer on the oscillatory behavior of solutions but Theorem 3.0.1 applies and gives a

positive answer.
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Example 13. Consider the equation

( 3\
£ 0=n(mod4)
1=, 1=n(mod4)
z(n+1) —z(n)+ z(n—2)=0 forn=0,1,---. (44)
==, 2=n(mod4)
L 105> 3 =n(mod4) |

* We have A\ := (0, 52), which is defined in (2.23), and

A1 )\%]j(l_)\%y 0 =n(mod4)

1 _ #%)27 1 =n(mod4)

AT = Ap())) . 2= n(modd
A1— )\T4l)( Ty, 3 =n(mod4)

forn =0,1,---. Simply, we compute

1 1
inf
A€(0711070){)‘(1_)‘100)(1 _AIOO)} >‘<1_)‘100)(1 )‘11(;10) Aa10(29 V211)
= %(211\/21 —3016) ~ ;A 1,

100

which shows that Theorem 2.2.4 (i) fails. This implies that Theorem 2.2.1 (i) and

Theorem 2.2.3 also cannot apply.

* We have
)
T(1+ A55)2 (1 + Ag) 0 =n(mod4)
1 ﬁ 1+ Ap(j S+ A555) (1 + Aqgp)?, 1 =n(mod4)
A
j=n—2 T+ A1+ AL (14 A42), 2 =n(mod4)
\%(1+)\11050)(1+/\11040)(1+)\11070) 3 =n (mod4)
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forn =0,1,---. Simply, we compute

1 15 14 1 15 14
inf{ ~(1+A—) (14— Tra— ) (14 a—
)l\rzll{)\( * 100) ( * 100)} )\( * 100) ( * 100)

341

T

which shows that Theorem 2.2.5 fails too.

* First, we compute

1 n
Bi(n) = ;g{{x [T [+ anG )]}

j=n—2
(
T(1+A2)%(1+ Ads) ‘AH%, 0 = n (mod4)
T A5 (14 Age)? |50, 1 =n (mod4)

Q

)
)

%( —i—)\ll(f‘())( —1—)\11070)(1—{—)\11050 ‘/\%%, 2 =n(mod4)
)

31+ AGe) (1 + Age) (1 + Aqgg) ‘A—)%’ 3 = n (mod4)
(%, 0 = n (mod4)

_ e, 1=n(mod4)

- s 2=n(mod4)
| 100, 3 =mn(mod4)
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forn=20,1,--

Ba(n) =
forn=20,1,--
with { = 2.

Therefore, every solution of (4.4) is oscillatory.

-. Next, we compute

1 £
E{X AH [1+251(5) }
Jj=n

—2
)

(L4 A 106) (1 + M55 706) (1 + A5 105) |/\~>%’ 0 =mn(mod4)
3 (14 Agg i) (1 + Ao ion) (1 + Mg 10p) |/\—>%’ 1 =n(mod4)
3 (14 A5 106) (1 + A5 700) (1 + A5 106) |/\—>%’ 2 =n(mod4)
L3+ A5 700) (1 + A ang) (1 + M 150) [y a0, 3= 1 (mod4)
(%, 0 = n (mod4)

<%, 1 =n(mod4)

o, 2=mn(mod4)

| 100, 3 =n(mod4)

101
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-. This yields liminf,, ., f2(n) =

100

> 1, i.e., Theorem 3.0.1 applies



CHAPTER FIVE
CONCLUSIONS

In the literature, there exist other iterative tests for the oscillation of solutions of

delay difference equations. In this direction, we quote below one of the first important

results by X. H. Tang and J. S. Yu.

Theorem 5.0.1 ((Tang & Yu, 1999b, Corollary 1)). Assume that there exists { € N

such that
- L(T+1)
lim inf > ——
pt pe(n) (7’ + 1)
where
1, k=20
pr(n) == ndr >
> pea()p(i), keN.
j=n+1

Then, every solution of (1.3) oscillates.

Proof. By Theorem 2.2.2, we know that p;(n) < 1 for all large n. Then,
liminfp;(n) < liminfp,(n), fori=1,2,---.
n—oo

n—oo

This shows by (5.1) that
> p(G) = p(0) + > pilkr) = o,
=0 k=0

and there exists € > 0 such that

1\ 1
(T—: ) (pe(n)) = > ¢ forall large n.

Thus, (5.2) and (5.3) imply that

ipo){(ﬁl)e(pz(j))” 1| =

By (Tang & Yu, 1999b, Theorem 1), every solution of (1.3) is oscillatory.
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Remark 7. Recall that Theorem 5.0.1 includes Theorem 2.2.3 with ¢ = 1.

Next, we quote a special case of another iterative result by M. Bohner, B. Karpuz
and O. Ocalan, which is extracted from Bohner et al. (2008) for the discrete time scale

nonnegative integers.

Theorem 5.0.2 (Cf. (Bohner et al., 2008, Theorem 2.3)). Assume that there exists { € N

such that
liminfay(n) > 1, (5.5)
n—oo
where
1, k=0
ag(n) = . 1
inf — —— ¢, keN
edw | ATTGZ, - [1 = Ao ()p(5)]
and

A ={A>0:1-A_1(n)p(n) > 0 forall largen} fork € N.

Then, every solution of (1.3) oscillates.

Proof. Assume the contrary that {x(n)} is an nonoscillatory solution of (1.3). Without
loss of generality, we suppose that {x(n)} is eventually positive. Then, there exists

N; € N such that z(n + 1),z(n) and z(n — 7) are positive for n > N;. By (1.3),

{z(n)} is a nonincreasing sequence on { N1, Ny + 1, -- - }. Define w(n) := x(;z;;) for

n > Np,. We rewrite (1.3) in the following form
z(n+1)—z(n)+wn)pn)x(n) =0 forn > Ny, (5.6)
Then, we have

0=x(n+1) = z(n) +w(n)p(n)z(n)

> —z(n)[l — w(n)p(n)],
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which implies w(n)p(n) < 1. From (5.6), we see that

1
[T [1 = w(ip()]

w(n) = for n > Ns, (5.7)

where N, := N; + 7. Now, we define

w(n), k=0
z(n) = (5.8)

min{z; 1(j): j=n—7n—7+1,---,n}, k=1,2---(

for n > N,. By (5.7), (5.8) with k = 1 for n > Nj, it follows that w(n) > z(n) for
n > Ny. Thus z1(n) € Ay for n > N3, where N3 := Ny + 7. Thus,

-y 1
T L= 2 (n)p(h)]
y z1(n)

21(n) 112, 11 = z1(n)p(j)]
> aq(n)z1(n)

w(n)

for n > Nj3. From (5.6), we get

0>z(n+1)—x(n)+ z1(n)ag(n)p(n)x(n)
> —z(n)[1 = z(n)ar(n)p(n)),
which implies that z; (n)as (n)p(n) < 1forn > Nj,i.e., z1(n) € Ay forn > N3. From

(5.7) and (5.8) with k& = 2, since 23(n) < z1(n) for n > Ny, we have, z3(n) € A, for

n > Ny, where Ny := N3 + 7. Thus,

win) >
H?:n_T[l — z1(n)aa (f)p(7)]
S 1
B H?;i—f[l — zo(n)au (5)p(7)]
29(n)

2(n) [Tj=, .1 = 22(n)ai (5)p())]

> ap(n)z(n)
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for n > N,. By induction, it follows from (5.7) and (5.8) with & = ¢ that

w(n) > ay(n)z(n) forn > Nj. (5.9

where N5 := Ny + ¢7. From Lemma 3.1.3, taking inferior limits on both sides of (5.9),
we get

liminfw(n) > liminfla,(n)z,(n)]

n—oo n—o0

> liminfoy(n) liminf z,(n)

n—oo n—oo
= liminfa,(n) liminfw(n), (5.10)
n—oo n—oo

which yields lim inf,,_,, a(n) < 1 contradicting (5.5). This completes the proof. [
Remark 8. Theorem 5.0.1 and Theorem 5.0.2 are not comparable.

Example 14. Consider the difference equation

4 3
1315 0 =n (mod 3)

16384
z(n+1)—z(n)+ 29, 1=n(mod3) z(n—4)=0 forn=0,1,---. (5.11)
\%, 2 = n (mod 3) )
We compute that
( \
3950338 ~ 0.327505, 0 = n (mod 3)
pi(n) = § 141907 ~ (.327996, 1=n(mod3) p Jorn=0.1,---
| Ehs ~ 0.327957, 2= n(mod3) |
r \
Sz 9102 ~ 0.107377, 0 = n (mod 3)
pa(n) = | J0T632283449. , (.107534, 1=mn(mod3) p Jorn=0,1,---,

| Siosssiosaty ~ 0-107485, 2= n (mod3)

Ve
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which shows that

n—oo

That is, every solution of (5.11) oscillates by Theorem 5.0.1.

On the other hand, we compute

ag(n)

az(n)

Q

Q

1

inf '
A€, 2240956 /\ H] =n— 7—[1 - )‘p(j)]
1 _
)‘(1 )‘2240956)2(1_>‘116334854)(1 >\2200690) O =" (mOd 3)
inf 1 =
A€(0’2£10956) )\( )\2249956)( >‘116334854)2( >\2200690) 1 i (mOd 3)
1 pu—
ST E A EE e 2= n(mod3)
( 3\
1.00096, 0= n(mod3)
1.00084, 1=n(mod3) ¢ #1 forn=0,1,--
0.999467, 2 = n (mod 3)
\ J

1

inf
A€(0,12.1697 {)\H o T[

inf
A€(0,12.1697)

;

1.00115,

1.0014,

0.999996,
\

1= Aai(5)p(4)]

}

1
A(1—X0.0821714)(1—X0.0820876)2(1—X0.0817096) ’

1

X(1—X0.0821714)2(1—0.0820876) (1—X0.0817096) *

1

0 = n (mod 3)
1 =n(mod3)
2 =n(mod 3)

which shows that Theorem 5.0.2 fails.

Example 15. When (
Theorem 2.2.4 is better than Theorem 2.2.3.

As the final sentence, we would like to mention that our main result Theorem 3.0.1

\

L A(1—X0.0821714)(1—X0.0820876)(1—X0.0817096)2 ’

> #1 forn=0,1,---

/
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I

2=

2(4+41)
liminfpy(n) = 0.107377 > (E) ~ 0.107374.

)

/

= n (mod 3)

= n (mod 3)

n (mod 3)

1, Theorem 5.0.2 is better than Theorem 5.0.1 since




complements Theorem 5.0.2 in a similar manner that Theorem 2.2.5 complements

Theorem 2.2.4.
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