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ITERATED OSCILLATION TESTS FOR DIFFERENCE EQUATIONS WITH

VARIABLE COEFFICIENTS

ABSTRACT

In this thesis, we will reconsider the significant results on oscillation and

nonoscillation of solutions of an important class of difference equations with variable

coefficients in the literature and we will examine them with numerical examples.

Later, we will give our new result for the oscillation of delay difference equations

with variable coefficients and we will reinforce the importance of our result with an

example where to the best of our knowledge all the oscillation results in the literature

fail to give a positive answer. Lastly, we will state some of the other well-known

iterative results on oscillation of solutions of delay difference equations to make our

final comments.

Keywords: Oscillation, nonoscillation, delay difference equations
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DEĞİŞKEN KATSAYILI FARK DENKLEMLERİN SALINIMI İÇİN

YİNELEMELİ SALINIM TESTLERİ

ÖZ

Bu tezde, literatürdeki değişken katsayılı fark denklemlerin önemli bir sınıfının

çözümlerinin salınımlı ve salınımsızlığına ilişkin önemli sonuçları yeniden ele

alacağız ve sayısal örnekler üzerinden inceleyeceğiz. Daha sonra değişken katsayılı

gecikmeli fark denklemlerin salınımı için yeni sonucumuzu vereceğiz ve

sonucumuzun önemini bildiğimiz kadarıyla literatürde daha önceki hiçbir sonucun

olumlu cevap veremediği bir sayısal örnekle pekiştireceğiz. Son olarak, gecikmeli

fark denklemlerin çözümlerinin salınımı için bilinen diğer yinelemeli sonuçlardan

bazılarını son açıklamalarımızı yapmak için ifade edeceğiz.

Anahtar kelimeler: Salınım, salınımsızlık, gecikmeli fark denklemleri
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CHAPTER ONE

INTRODUCTION

Ordinary difference equations have powerful outcomes and these outcomes help

finding solution of many problems in the natural sciencies like physics, chemistry and

biology. Nowadays, the ordinary difference equations appear in astronomy, mechanics

and engineering. They take role in new inventions in technology, and also sending a

vehicle into space. The most interesting applications of these equations are the theory

of oscillations. For these results, today finding the new results in difference equations

and its applications occupy an important place in mathematics.

Definition 1.0.1. The difference equation of order (τ + 1) is in the form of

x(n+ 1) = f
(
n, x(n), x(n− 1), · · · , x(n− τ)

)
for n = 0, 1, · · ·

for a given function f ∈ C(N0 × Rτ+1,R) and τ ∈ N0, where N0 := {0, 1, · · · }

Example 1. Fibonacci first described his famous number sequence as the solution to

a math problem: If a pair of rabbits are put together under certain conditions (no

rabbits may leave the field), how many will there be in one year? This puzzle, posed by

Fibonacci in the 13th-century, is the premise for Gravett’s book.

A pair of rabbits does not breed until they are 2months old. After they are 2months old,

each pair of rabbits produces another pair each month.Therefore, In the first month,

there is 1 pair of rabbit. In the second month, that pair of rabbits mate, there is still

1 pair of rabbit. In the third month, there are 2 pairs of rabbits where one of them is

newborn pair of rabbit and the old ones mate again. In the fourth month, there are 3

pairs of rabbits where the newborn pair of rabbits are produced because of mating of

original pair at last month. In the (n+ 1)-st month, the number of pairs of rabbits are

equal to the number of pairs in previous month i.e. the number of pairs in n-th month

plus the number of pairs before the previous month i.e. the number of pairs in (n−1)-st

month. Therefore, the mathematical formulation for the number of rabbits is

x(n+ 1) = x(n) + x(n− 1), n = 0, 1, · · · . (1.1)
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Definition 1.0.2. The linear difference equation of order (τ + 1) is in the form of

p0(n)x(n+1)+p1(n)x(n)+· · ·+pτ+1(n)x(n−τ) = q(n), p0(n)pτ+1(n) ̸= 0. (1.2)

The equation (1.2) is called an equation with constant coefficients, if the constants

p0(n), · · · , pτ+1(n) do not depend on n. Otherwise, it is called an equation with

variables. If q(n) ≡ 0, then the equation (1.2) is homogenous. Otherwise, the

equation (1.2) is nonhomogenous.

Example 2. Eq. (1.1) in Example 1, is the second-order homogenous difference

equation with constant coefficients while the equation

x(n+ 1) = (n− 1)x(n) + x(n− 1) + 2n, n = 0, 1, · · ·

is the second-order nonhomogenous difference equation with variable coefficients.

Definition 1.0.3. A sequence {x(n)} for which (1.2) is satisfied for n = 0, 1, · · · is

called a solution of (1.2). It is known that for prescribed values φ0, φ1, · · · , φτ , (1.2)

admits a unique solution {x(n)} satisfying x(−j) = φj for j = 0, 1, · · · , τ .

Example 3. Eq. (1.1) has the solution

x(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1−

√
5

2

)n

for n = −1, 0, · · · ,

where c1 and c2 can be any real number. With the initial values x(−1) = 1 and x(0) =

1, we have a unique solution

x(n) =
5 + 3

√
5

10

(
1 +

√
5

2

)n

+
5− 3

√
5

10

(
1−

√
5

2

)n

for n = −1, 0, · · · .

Precisely, we have

{x(n)} = { 1︸︷︷︸
x(−1)

, 1︸︷︷︸
x(0)

, 2︸︷︷︸
x(1)

, 3︸︷︷︸
x(2)

, 5︸︷︷︸
x(3)

, 8︸︷︷︸
x(4)

, 13︸︷︷︸
x(5)

, 21︸︷︷︸
x(6)

, 34︸︷︷︸
x(7)

, · · · }.

In this thesis, we advance a recent oscillation test for the oscillation of the delay
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difference equation

x(n+ 1)− x(n) + p(n)x(n− τ) = 0 for n = 0, 1, · · · , (1.3)

where {p(n)} ⊂ [0,∞) and τ ∈ N0.

Definition 1.0.4. A solution {x(n)} of (1.3) is said to be eventually positive if

sup{n : x(n) ≤ 0} < ∞.

Otherwise, if

sup{n : x(n) ≥ 0} < ∞,

then {x(n)} is said to be eventually negative. A solution {x(n)} of (1.3), which is

neither eventually positive nor eventually negative is said to be oscillatory.

Example 4. Consider the difference equation

x(n+ 1)− x(n) +
4

27
x(n− 2) = 0 for n = 0, 1, · · · . (1.4)

Note that

x1(n) =

(
−1

3

)n

, x2(n) =

(
2

3

)n

and x3(n) = n

(
2

3

)n

for n = −2,−1, · · ·

are three solutions of (1.4). Note that the solution {x1(n)} is oscillatory while

{x2(n)} and {x3(n)} are nonoscillatory. Furthermore, the solution satisfying the

initial condition x(−2) = 745
81
, x(−1) = −697

243
and x(0) = 793

729
is

x4(n) =

(
−1

3

)n

+

(
2

3

)n+6

for n = −2,−1, · · · .

Explicitly, we have

{x4(n)} =

{
745

81︸︷︷︸
x4(−2)

,−697

243︸ ︷︷ ︸
x4(−1)

,
793

729︸︷︷︸
x4(0)

,− 601

2187
,︸ ︷︷ ︸

x4(1)

985

6561︸ ︷︷ ︸
x4(2)

,− 217

19683
,︸ ︷︷ ︸

x4(3)

1753

59049︸ ︷︷ ︸
x4(4)

,
1319

177147
,︸ ︷︷ ︸

x4(5)

4825

531441︸ ︷︷ ︸
x4(6)

, · · ·
}
,
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which is eventually positive since

sup{n : x4(n) ≤ 0} = sup
{
n :

(
−1

3

)n

+

(
2

3

)n+6

≤ 0

}
= 3 < ∞.

In the last few decades, the oscillatory character and the existence of positive

solutions of difference equations with several deviating arguments have been

extensively studied, see, for example, papers Erbe & Zhang (1989), Ladas et al.

(1989a,b), Ladas (1991), Győri & Ladas (1991), Yu et al. (1994), Chen & Yu (1995),

Tang & Yu (1999a,b), Tabor (2003), Berezansky & Braverman (2006), Chatzarakis &

Stavroulakis (2006), Bohner et al. (2008), Chatzarakis et al. (2008), Malygina &

Chudinov (2013), Karpuz (2017) and references cited therein. Our results will cover

the general discussion in the mentioned references and complement them.

4



CHAPTER TWO

RESULTS IN THE LITERATURE

In this section, for the sake of convenience, we will quote some related results on

the oscillation and nonoscillation of solutions to (1.3).

2.1 Preparatory Results

Before we give the proof of Theorem 2.2.3, we need the following lemma.

Lemma 2.1.1. Assume that

lim sup
n→∞

n−1∑
j=n−τ

p(j) > 0. (2.1)

Let {x(n)} be a nonoscillatory solution of (1.3). Then,

lim inf
n→∞

x(n− τ)

x(n)
< ∞.

Proof. Consider, in view of (3.3), there exist an increasing divergent sequence {nk}

and a constant ε > 0 such that

nk∑
j=nk−τ

p(j) ≥
nk−1∑

j=nk−τ

p(j) ≥ ε for all k. (2.2)

Define n∗
k to be the number between (nk − τ) and nk such that

n∗
k−1∑

j=nk−τ

p(j) <
ε

2
and

n∗
k∑

j=nk−τ

p(j) ≥ ε

2
for all k, (2.3)

where we adopt the convention that sum over empty set is zero. Clearly, such a number

exists. By (2.2) and (2.3), we get

nk∑
j=n∗

k

p(j) =

nk∑
j=nk−τ

p(j)−
n∗
k−1∑

j=nk−τ

p(j) ≥ ε− ε

2
=

ε

2
for all k. (2.4)
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From Eq. (1.3), (2.3) and eventually nonincreasing nature of {x(n)}, we have for all k

that

x(n∗
k + 1)− x(nk − τ) =

n∗
k∑

j=nk−τ

[x(j + 1)− x(j)]

= −
n∗
k∑

j=nk−τ

p(j)x(j − τ)

≤ −

( n∗
k∑

j=nk−τ

p(j)

)
x(n∗

k − τ)

≤ − ε

2
x(n∗

k − τ).

Hence,
ε

2
x(n∗

k − τ) ≤ x(nk − τ) for all k. (2.5)

Similarly, from Eq. (1.3) and (2.4), we get for all k that

x(nk + 1)− x(n∗
k) =

nk∑
j=n∗

k

[x(j + 1)− x(j)]

= −
nk∑

j=n∗
k

p(j)x(j − τ)

≤ −

(
nk∑

j=n∗
k

p(j)

)
x(n∗

k − τ)

≤ − ε

2
x(n∗

k − τ),

and so
ε

2
x(nk − τ) ≤ x(n∗

k) for all k. (2.6)

From (2.5) and (2.6), we find that

(
ε

2

)2

x(n∗
k − τ) ≤ x(n∗

k) for all k,

i.e.,
x(n∗

k − τ)

x(n∗
k)

≤
(
2

ε

)2

for all k. (2.7)
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Then, (2.7) implies,

lim inf
n→∞

x(n− τ)

x(n)
< ∞.

and the proof is complete.

Before giving the proof of Theorem 2.2.5 (i), we need the following lemma.

Lemma 2.1.2. If (2.28) holds, then

lim sup
n→∞

max
l−τ≤n+1≤l

{(
n∑

j=l−τ

p(j)

)(
l∑

j=n+1

p(j)

)}
> 0 (2.8)

or

lim sup
n→∞

n∑
j=n−τ

p(j) > 1. (2.9)

Proof. We can find N1 ∈ N and µ0 > 1 such that 1
λ

∏n
j=n−τ [1 + λp(j)] ≥ µ0 for all

λ ≥ 1 and n ≥ N1. Now, fix some λ0 ≥ 1 such that λ0 >
1

µ0−1
. Then, we have

(
1 +

λ0

τ + 1

n∑
j=n−τ

p(j)

)τ+1

=

(
1

τ + 1

n∑
j=n−τ

[1 + λ0p(j)]

)τ+1

≥
n∏

j=n−τ

[1 + λ0p(j)] ≥ λ0µ0,

for n ≥ N1, where we have applied the inequality of arithmetic and geometric means.

Then, we have
∑n

j=n−τ p(j) ≥ ε for n ≥ N1, where ε := τ+1
λ0

(
(λ0µ0)

1
τ+1 − 1

)
> 0.

Thus, maxn−τ≤j≤n{p(j)} ≥ ε
τ+1

for n ≥ N1. Let {nk}∞k=1 be an increasing sequence

of integers satisfying p(nk) ≥ ε
τ+1

for k = 1, 2, · · · . Now, consider the following two

possible cases.

Case 1. Let lim supk→∞
∑nk−1

j=nk−τ p(j) > 0. Then, (2.8) immediately follows from

lim sup
k→∞

[(
nk−1∑

j=nk−τ

p(j)

)
p(nk)

]
> 0.

Case 2. Let lim supk→∞
∑nk−1

j=nk−τ p(j) = 0. Then, each of the term of the sum tends

7



to 0 as k → ∞, i.e. limk→∞
∏nk−1

j=nk−τ [1 + λ0p(j)] = 1. Thus,

lim inf
k→∞

(
1

λ0

[1 + λ0p(nk)]

)
= lim inf

k→∞

(
1

λ0

nk∏
j=nk−τ

[1 + λ0p(j)]

)
≥ µ0,

which yields lim infk→∞ p(nk) ≥ µ0 − 1
λ0

> 1, i.e., (2.9) holds. Therefore, the proof

is complete.

2.2 Main Results

To the best of our knowledge, one of the first results in this subject is given by

L.H. Erbe and B.G. Zhang in 1989.

Theorem 2.2.1 ((Erbe & Zhang, 1989, Theorems 2.2 and 2.3)). (i) Assume that

lim inf
n→∞

p(n) >
τ τ

(τ + 1)τ+1
. (2.10)

Then, every solution of (1.3) oscillates.

(ii) Assume that

p(n) ≤ τ τ

(τ + 1)τ+1
for all large n. (2.11)

Then, (1.3) has an eventually positive solution.

Proof. (i) Assume for the sake of contradiction that, there exists an eventually

positive solution {x(n)} of (1.3). Suppose that x(n) > 0 for n ≥ N1, where N1 ∈ N

is sufficiently large. Let w(n) := x(n)
x(n+1)

≥ 1 for n ≥ N1. Dividing (1.3) by x(n), we

have
1

w(n)
= 1− p(n)w(n− τ) · · ·w(n− 1), n ≥ N2, (2.12)

where N2 ≥ N1 + τ . From (2.12), we have p(n) > 0 for n ≥ N2. Thus, {x(n)} is

nonincreasing on {N2, N2 + 1, · · · }, and so, w(n) ≥ 1 for n ≥ N2. Also {p(n)} is

bounded above. Otherwise, from (2.10) and (2.12), we get w(n) < 0 for all arbitrarily

8



large n. If we set w∗ := lim infn→∞ w(n), then from (2.12), we have

lim sup
n→∞

1

w(n)
=

1

w∗
= 1− lim inf

n→∞
{p(n)w(n− τ) · · ·w(n− 1)}

≤ 1− wτ
∗ lim inf

n→∞
p(n).

Thus, we have

lim inf
n→∞

p(n) ≤ w∗ − 1

wτ+1
∗

.

Since maxh≥1

{
h−1
hτ+1

}
= ττ

(τ+1)τ+1 , we have

lim inf
n→∞

p(n) ≤ τ τ

(τ + 1)τ+1
,

which contradicts with (2.10).

(ii) We will show that

1

w(n)
= 1− p(n)w(n− τ) · · ·w(n− 1) for n ≥ N1, (2.13)

whereN1 ∈ N is sufficiently large, has a positive solution. For this purpose, we define

s(n) :=


τ + 1

τ
, N1 − τ ≤ n < N1

1

1− p(n)s(n− τ) · · · s(n− 1)
, n ≥ N1.

(2.14)

From (2.13) and (2.14), it follows that s(N1) ≤ τ+1
τ
. So, we define

s(N1 + 1) =
1

1− p(N1 + 1)s(N1 + 1− τ) · · · s(N1)
≤ τ + 1

τ
.

By induction, 1 < s(n) ≤ τ+1
τ

for n ≥ N1 and k ≥ 1. Thus, {s(n)} satisfies (2.13) on

{N1, N1 + 1, · · · }. Next, defining

x(n) :=


1, N1 − τ ≤ n ≤ N1

x(n− 1)

s(n− 1)
, n > N1,

9



it follows that {x(n)} satisfies (1.3).

Remark 1. When there is a single constant coefficient, the equation

x(n+ 1)− x(n) +
m∑
j=1

pjx(n− τj) = 0 for n = 0, 1, · · · ,

where pj ∈ R+ := (0,∞) and τj ∈ N0 for j = 1, 2, · · · ,m, in (Ladas et al., 1989a,

Theorem 1) reads as

x(n+ 1)− x(n) + px(n− τ) = 0 for n = 0, 1, · · · , (2.15)

where p ∈ R+ and τ ∈ N0, whose characteristic equation is

µ− 1 + pµ−τ = 0. (2.16)

Note that Eq. (2.16) cannot hold if µ ∈ [1,∞). Further, by simple calculus, we compute

min
h∈(0,1)

{
h− 1 + ph−τ

}
=

τ + 1

τ
(τp)

1
τ+1 − 1,

which shows that Eq. (2.16) fails to hold if p > ττ

(τ+1)τ+1 , and is fulfilled if p ≤ ττ

(τ+1)τ+1 .

Therefore, Theorem 2.2.1 extends (Ladas et al., 1989a, Theorem 1) to equations with a

variable coefficient.

Theorem 2.2.2 (Cf. (Erbe & Zhang, 1989, Theorem 2.5)). Assume that there exists an

increasing sequence {nk} of nonnegative integers such that

nk∑
j=nk−τ

p(j) ≥ 1 for all k.

Then, every solution of (1.3) oscillates.

Proof. Assume for the sake of contradiction that, there exists an eventually positive

solution {x(n)} of (1.3), i.e., x(n) > 0 for n ≥ N1, where N1 ∈ N is sufficiently

large. Then, x(n− τ) > 0 for n ≥ N2, whereN2 := N1 + τ . This implies that {x(n)}

is nonincreasing on {N2, N2 + 1, · · · }. There exists k1 such that nk1 ≥ N2. Now, we

10



estimate that

x(nk + 1) = x(nk − τ) +

nk∑
j=nk−τ

[x(j + 1)− x(j)]

= x(nk − τ)−
nk∑

j=nk−τ

p(j)x(j − τ)

≤ x(nk − τ)

(
1−

nk∑
j=nk−τ

p(j)

)
≤ 0

for all k ≥ k1, which is a contradiction.

Now, we will present two examples to show that Theorem 2.2.1 and Theorem 2.2.2

are not comparable.

Example 5. Consider the equation

x(n+ 1)− x(n) +


1
6
, 0 ≡ n (mod 2)

1
3
, 1 ≡ n (mod 2)

x(n− 2) = 0 for n = 0, 1, · · · . (2.17)

We compute that

lim inf
n→∞

p(n) =
1

6
>

22

33
=

4

27
.

Thus, Theorem 2.2.1 (i) holds, i.e., every solution of (2.17) oscillates. On the other

hand, we compute that

n∑
j=n−2

p(j) =


2
3
, 0 ≡ n (mod 2)

5
6
, 1 ≡ n (mod 2)

 ̸≥ 1 for n = 0, 1, · · · .

This shows that the condition of Theorem 2.2.2 cannot hold for any increasing sequence

{nk}.

Example 6. Consider the equation

x(n+1)− x(n)+


1
2
, 0 ≡ n (mod 2)

1
10
, 1 ≡ n (mod 2)

x(n− 2) = 0 for n = 0, 1, · · · . (2.18)

11



On one hand, we compute that

lim inf
n→∞

p(n) =
1

10
̸> 22

33
=

4

27
.

Thus, Theorem 2.2.1 (i) does not hold. On the other hand, we consider

n∑
j=n−2

p(j) =


11
10
, 0 ≡ n (mod 2)

7
10
, 1 ≡ n (mod 2)

for n = 0, 1, · · · . (2.19)

By taking nk = 2k for k ∈ N, we see that (2.19) is equal to 11
10
, which is greater than

1. Thus, by Theorem 2.2.2, every solution of (2.18) oscillates.

Theorem 2.2.1 (i) is improved by G. Ladas, Ch. G. Philos and Y.G. Sficas in 1989

by replacing the point-wise condition with the mean of consecutive τ -terms.

Theorem 2.2.3 ((Ladas et al., 1989b, Theorem 1)). Assume that

lim inf
n→∞

n−1∑
j=n−τ

p(j) >

(
τ

τ + 1

)τ+1

. (2.20)

Then, every solution of (1.3) oscillates.

Proof of Theorem 2.2.3. Assume to the contrary that {x(n)} is a nonoscillatory

solution of (1.3). Assume that {x(n)} is eventually positive, i.e., x(n), x(n − τ) > 0

for n ≥ N1, where N1 ∈ N is sufficiently large. It follows from (1.3) that

x(n+ 1)− x(n) + w(n)p(n)x(n) = 0, where w(n) :=
x(n− τ)

x(n)
,

12



for n ≥ N1. It follows that

w(n) =
1∏n−1

j=n−τ [1− w(j)p(j)]

≥ 1(
1− 1

τ

∑n−1
j=n−τ w(j)p(j)

)τ
≥ 1(

1− z(n)
τ

∑n−1
j=n−τ p(j)

)τ
=

1
z(n)
τ

∑n−1
j=n−τ p(j)

(
1− z(n)

τ

∑n−1
j=n−τ p(j)

)τ z(n)τ

n−1∑
j=n−τ

p(j)

≥
(
τ + 1

τ

)τ+1 n−1∑
j=n−τ

p(j)z(n),

where z(n) := minn−τ≤j≤n−1{w(j)} (here, we have used the fact that maxh∈[0,1]
{
h(1−

h)r
}
≤ rr

(r+1)r+1 for r > 0) and n ≥ N1. By Lemma 2.1.1, we see that w∗ is a positive

number, where w∗ := lim infn→∞ w(n). Note that lim infn→∞ z(n) = w∗. Then, we

obtain

w∗ ≥ lim inf
n→∞

{(
τ + 1

τ

)τ+1
}

n−1∑
j=n−τ

p(j)w∗

or equivalently

lim inf
n→∞

n−1∑
j=n−τ

p(j) ≤
(

τ

τ + 1

)τ+1

,

which is a contradiction.

Remark 2. Let us justify that Theorem 2.2.3 improves Theorem 2.2.1 (i). We estimate

that

lim inf
n→∞

1

τ

n−1∑
j=n−τ

p(j) = lim inf
n→∞

1

τ

τ∑
k=1

p(n− k)

≥ 1

τ

τ∑
k=1

lim inf
n→∞

p(n− k)

=
1

τ

τ∑
k=1

lim inf
n→∞

p(n)

= lim inf
n→∞

p(n).

This proves that (2.20) improves (2.10).
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Next, we give an example, where Theorem 2.2.1 and Theorem 2.2.2 fail to apply

but Theorem 2.2.3 does.

Example 7. Consider the equation

x(n+ 1)− x(n) +


1
8
, 0 ≡ n (mod 2)

1
4
, 1 ≡ n (mod 2)

x(n− 2) = 0 for n = 0, 1, · · · . (2.21)

We compute that

lim inf
n→∞

p(n) =
1

8
̸> 22

33
=

4

27
.

Thus, Theorem 2.2.1 (i) does not hold. Simply, we have

n∑
j=n−2

p(j) =


1
2
, 0 ≡ n (mod 2)

5
8
, 1 ≡ n (mod 2)

 ̸≥ 1 for n = 0, 1, · · · .

That is, the condition of Theorem 2.2.2 cannot hold for any increasing sequence {nk}.

Finally, we compute

n−1∑
j=n−2

p(j) =


3
8
, 0 ≡ n (mod 2)

3
8
, 1 ≡ n (mod 2)

 ≡ 3

8
for n = 0, 1, · · · ,

which yields

lim inf
n→∞

n−1∑
j=n−2

p(j) =
3

8
>

(
2

3

)3

=
8

27
.

Therefore, by Theorem 2.2.3, every solution of (2.21) oscillates.

Next, J. S. Yu, B. G. Zhang and Z. C. Wang in 1994 explored a very important

approach, which improves the above result by replacing the sum with a product. Their

approach also allowed to prove a new nonoscillation test, which improves

Theorem 2.2.1 (ii).

Theorem 2.2.4 ((Yu et al., 1994, Theorem 1)). (i) Assume that

lim inf
n→∞

inf
λ∈Λ

{
1

λ
∏n−1

j=n−τ [1− λp(j)]

}
> 1, (2.22)
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where

Λ := {λ > 0 : 1− λp(n) > 0 for all large n}. (2.23)

Then, every solution of (1.3) oscillates.

(ii) Assume that there exists λ0 ∈ Λ such that

1

λ0

∏n−1
j=n−τ [1− λ0p(j)]

≤ 1 for all large n. (2.24)

Then, (1.3) has an eventually positive solution.

Proof. (i) Assume to the contrary that {x(n)} is a nonoscillatory solution of (1.3).

Assume that x(n), x(n − τ) > 0 for n ≥ N1, where N1 ∈ N is sufficiently large. It

follows from (1.3) that

x(n+ 1)− x(n) + w(n)p(n)x(n) = 0, where w(n) :=
x(n− τ)

x(n)
,

for n ≥ N1. It follows that

w(n) =
1∏n−1

j=n−τ [1− w(j)p(j)]

≥ 1∏n−1
j=n−τ [1− z(n)p(j)]

=
1

z(n)
∏n−1

j=n−τ [1− z(n)p(j)]
z(n)

≥ inf
λ∈Λ

{
1

λ
∏n−1

j=n−τ [1− λp(j)]

}
z(n), (2.25)

where z(n) := minn−τ≤j≤n−1{w(j)} and n ≥ N1. One can show that (2.22) implies

(2.1). Indeed, if (2.1) fails, then limn→∞ p∗(n) = 0, where

p∗(n) := maxn−τ≤j≤n−1{p(j)}. Thus,

lim inf
n→∞

inf
λ∈Λ

{
1

λ
∏n−1

j=n−τ [1− λp(j)]

}
≤ lim inf

n→∞
inf
λ∈Λ

{
1

λ
∏n−1

j=n−τ [1− λp∗(n)]

}

= lim
n→∞

(τ + 1)τ+1

τ τ
p∗(n) = 0,
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which contradicts (2.22). It follows from Lemma 2.1.1 that w∗ is a positive number,

where w∗ := lim infn→∞w(n). Note that lim infn→∞ z(n) = w∗. Then, from (2.25),

we obtain

w∗ ≥ lim inf
n→∞

inf
λ∈Λ

{
1

λ
∏n−1

j=n−τ [1− λp(j)]

}
w∗,

or equivalently

lim inf
n→∞

inf
λ∈Λ

{
1

λ
∏n−1

j=n−τ [1− λp(j)]

}
≤ 1,

which is a contradiction.

(ii) By (2.24), we choose a positive integer N1 such that N1 ≥ τ and

λ0

n−1∏
j=n−τ

[1− λ0p(j)] ≥ 1, n ≥ N1.

Define

y(n) :=


1, N1 − τ ≤ n < N1

1

λ0

∏n−1
j=n−τ [1− λ0y(j)p(j)]

, n ≥ N1.

Then,

y(N1) =
1

λ0

∏N1−1
j=N1−τ [1− λ0y(j)p(j)]

=
1

λ0

∏N1−1
j=N1−τ [1− λ0p(j)]

≤ 1.

In general, by induction, we obtain

y(n) :=
1

λ0

∏n−1
j=n−τ [1− λ0y(j)p(j)]

≤ 1, n ≥ N1.

Thus, {y(n)} is defined. Also, we define

z(n) := 1− λ0y(n)p(n), n ≥ N1.

Then, z(n) > 0 for n ≥ N1 − τ and

z(n) = 1− p(n)∏n−1
j=n−τ z(j)

, n ≥ N1. (2.26)
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Define

x(n) :=


1, N1 − τ ≤ n < N1

n−1∏
j=N1−1

z(j), n ≥ N1.

Then we have by (2.26)

x(n+ 1)

x(n)
− 1 + p(n)

x(n− τ)

x(n)
= 0.

That is,

x(n+ 1)− x(n) + p(n)x(n− τ) = 0.

Thus, we obtain a positive solution {x(n)} of equation (1.3).

Remark 3. Let us show that Theorem 2.2.4 (i) improves Theorem 2.2.3. We estimate

by using the inequality of arithmetic-geometric means that

1

λ
∏n−1

j=n−τ [1− λp(j)]
≥ 1

λ
(
1− λ

τ

∑n−1
j=n−τ p(j)

)τ
≥ 1

λ
(
1− λ

τ

∑n−1
j=n−τ p(j)

)τ
∣∣∣∣∣
λ→ 1

τ+1
τ

∑n−1
j=n−τ

p(j)

=

(
τ + 1

τ

)τ+1 n−1∑
j=n−τ

p(j)

for λ ∈ Λ and all large n. This proves that (2.22) improves (2.20).

On the other hand, Theorem 2.2.4 (ii) also improves Theorem 2.2.1 (ii). For

justification, suppose that p(n) ≤ ττ

(τ+1)τ+1 for all large n. We can find M ∈ R+ such

thatM ≤ ττ

(τ+1)τ+1 , p(n) ≤ M for all large n, and 1− λ0M > 0, where λ0 :=
1

(τ+1)M
,

i.e., λ0 ∈ Λ. It follows that

λ0

n−1∏
i=n−τ

[1− λ0p(i)] ≥ λ0

n−1∏
i=n−τ

[1− λ0M ] =
τ τ

(τ + 1)τ+1

1

M
≥ 1 for all large n.

This proves that (2.24) improves (2.11).
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Example 8. Consider the equation

x(n+1)− x(n)+


1
4
, 0 ≡ n (mod 2)

1
28
, 1 ≡ n (mod 2)

x(n− 2) = 0 for n = 0, 1, · · · . (2.27)

We compute that

n−1∑
j=n−2

p(j) =


2
7
, 0 ≡ n (mod 2)

2
7
, 1 ≡ n (mod 2)

 ≡ 2

7
for n = 0, 1, · · · ,

which yields

lim inf
n→∞

n−1∑
j=n−2

p(j) =
2

7
̸>
(
2

3

)3

.

Thus, Theorem 2.2.3 fails. On the other hand, we compute that Λ = (0, 4) and

1

λ
∏n−1

j=n−2[1− λp(j)]
=


1

λ(1− λ
28

)(1−λ
4
)
, 0 ≡ n (mod 2)

1
λ(1−λ

4
)(1− λ

28
)
, 1 ≡ n (mod 2)


=

1

λ
(
1− λ

28

)(
1− λ

4

)
for n = 0, 1, · · · . Thus, we see that

inf
λ∈(0,4)

{
1

λ
(
1− λ

28

)(
1− λ

4

)} =
1

λ
(
1− λ

28

)(
1− λ

4

)∣∣∣∣∣
λ→ 4

3
(8−

√
43)

=
1

504

(
260 + 43

√
43
)
> 1

for n = 0, 1, · · · . That is, by Theorem 2.2.4 (i), every solution of (2.27) oscillates.

Finally, we would like to quote the following results from Karpuz (2017). We will

be confine our attention on the oscillation part of this recent result.

Theorem 2.2.5 ((Karpuz, 2017, Theorems 1 and 2)). (i) Assume that

lim inf
n→∞

inf
λ≥1

{
1

λ

n∏
j=n−τ

[
1 + λp(j)

]}
> 1. (2.28)
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Then, every solution of (1.3) oscillates.

(ii) Assume that there exists λ0 ≥ 1 such that

1

λ0

n∏
j=n−τ

[
1 + λ0p(j)

]
≤ 1 for all large n. (2.29)

Then, (1.3) has an eventually positive solution.

Now, we present the proof of Theorem 2.2.5.

Proof of Theorem 2.2.5. (i) Assume to the contrary that {x(n)} is a nonoscillatory

solution of (1.3). Assume that x(n), x(n − τ) > 0 for n ≥ N1, where N1 ∈ N is

sufficiently large. By Lemma 3.1.1, (2.9) cannot hold. So, we have to assume (2.8).

Let w(n) := x(n−τ)
x(n+1)

for n ≥ N1. Now, we claim that

1 ≤ ℓ := lim inf
n→∞

w(n) < ∞. (2.30)

Let N2 ∈ N satisfy N2 ≥ N1 + 2τ . From (1.3), for n ≥ N2, we have

x(n+ 1) > x(n+ 1)− x(l − 1) = −
l∑

j=n+1

[x(j + 1)− x(j)]

=
l∑

j=n+1

p(j)x(j − τ) ≥
( l∑

j=n+1

p(j)

)
x(l − τ) (2.31)

and

x(l − τ) > x(l − τ)− x(n+ 1) = −
n∑

j=l−τ

[x(j + 1)− x(j)]

=
n∑

j=l−τ

p(j)x(j − τ) ≥
( n∑

j=l−τ

p(j)

)
x(n− τ), (2.32)

where l satisfies l − τ ≤ n+ 1 ≤ l. Combining (2.31) and (2.32), we get

1 ≤ w(n) <

[( n∑
j=l−τ

p(j)

)( l∑
j=n+1

p(j)

)]−1

for n ≥ N2, (2.33)
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Considering (2.8), we take inferior limit as n → ∞ in (2.33) after taking minimum

over l to obtain (2.30). On the other hand, from (1.3), we get

[1 + w(n)p(n)]x(n+ 1)− x(n) = 0 for n ≥ N2

or equivalently

w(n) =
n∏

j=n−τ

x(j)

x(j + 1)
=

n∏
j=n−τ

[1 + w(j)p(j)] for n ≥ N2.

Thus, we have

w(n) ≥
n∏

j=n−τ

[1 + w∗(n)p(j)] for n ≥ N2, (2.34)

where

w∗(n) := min
n−τ≤j≤n

w(j) ≥ 1 for n ≥ N2.

Clearly, lim infn→∞ w∗(n) = ℓ. Taking inferior limit of both sides of (2.34), we get

ℓ ≥ lim inf
n→∞

n∏
j=n−τ

[1 + ℓp(j)]

or equivalently

lim inf
n→∞

(
1

ℓ

n∏
j=n−τ

[1 + ℓp(j)]

)
≤ 1,

which contradicts (2.28) since ℓ ≥ 1. Therefore, the proof is complete.

(ii) Assume that (2.29) holds for n ≥ N1, where N1 ∈ N. Note that, (2.29) implies

1− p(n)
n−1∏

j=n−τ

[1 + λ0p(j)] = 1− p(n)

1 + λ0p(n)

n∏
j=n−τ

[1 + λ0p(j)]

≥ 1− λ0p(n)

1 + λ0p(n)
=

1

1 + λ0p(n)
> 0

for n ≥ N1. Further, by (2.29), we have 1
λ0
[1 + λ0p(j)] ≤ 1 for n ≥ N1, which yields
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1− p(n) ≥ 1
λ0

> 0 for n ≥ N1, i.e., 0 ≤ p(n) < 1 for n ≥ N1. Now, we define

y(n) :=


1, N1 − τ ≤ n < N1∏n−1

j=n−τ [1 + λ0y(j)p(j)]

λ0

(
1− p(n)

∏n−1
j=n−τ [1 + λ0y(j)p(j)]

) , n ≥ N1.

(2.35)

First, we claim that y(n) > 0 for n ≥ N1. Assume the contrary that, y(l) ≤ 0 for

some integer l ≥ N1. Without loss of generality, we may assume that y(n) > 0 for

N1 − τ ≤ n < l. Then, we have

y(l) ≥
∏l−1

j=l−τ [1 + λ0y(j)p(j)]

λ0(1− p(l))
> 0,

which is a contradiction. Thus, y(n) > 0 for n ≥ N1−τ . Next, we claim that, y(n) ≤ 1

for n ≥ N1. Assume to the contrary that, y(l) > 1 for some integer l ≥ N1. Without

loss of generality, we may assume that y(n) ≤ 1 for N1 − τ ≤ n < l. Then, we have

y(l) ≤
∏l−1

j=l−τ [1 + λ0p(j)]

λ0

(
1− p(l)

∏l−1
j=l−τ [1 + λ0p(j)]

)
≤

λ0

1+λ0p(l)

λ0

(
1− λ0p(l)

1+λ0p(l)

) = 1,

which is a contradiction. Thus, y(n) ≤ 1 for n ≥ N1 − τ . From (2.35), we have

y(n) =
1

λ0

n∏
j=n−τ

[1 + λ0y(j)p(j)] for n ≥ N1. (2.36)

Finally, we define

x(n) :=
n−1∏

j=N1−τ

1

1 + λ0y(j)p(j)
for n ≥ N1 − τ. (2.37)

We iterate (1.3) in the backwards direction to define x(n) for −τ ≤ n < N1 − τ , i.e.,

x(n) :=


−x(n+ τ + 1)− x(n+ τ)

p(n+ τ)
, p(n+ τ) ̸= 0 and N1 − τ < n ≤ −τ

1, p(n+ τ) = 0 and n = N1 − τ < n ≤ −τ.
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Clearly, 0 < x(n) ≤ 1 for n ≥ N1 − τ . By (2.36) and (2.37), we see that

0 = 1− [1 + λ0y(n)p(n)] + λ0y(n)p(n)

= 1− x(n)

x(n+ 1)
+ p(n)

x(n− τ)

x(n+ 1)

for n ≥ N1. Thus, x(n) is eventually positive and satisfies (1.3).

Remark 4. Suppose that (2.28) holds for (2.15), i.e.,

1

λ

n∏
j=n−τ

[1 + λp] ≡ 1

λ
(1 + λp)τ+1 > 1 for all λ ≥ 1. (2.38)

Note that (2.38) trivially holds for 1 > λ > 0, then

1

λ
(1 + λp)τ+1 > 1 for all λ > 0

⇐⇒ (1 + λp)τ+1 > λ for all λ > 0

⇐⇒ − λ+ (1 + λp)τ+1 > 0 for all λ > 0

⇐⇒ − pλ

1 + λp
+ p(1 + λp)τ > 0 for all λ > 0

⇐⇒ 1

1 + λp
− 1 + p(1 + λp)τ > 0 for all λ > 0

⇐⇒ µ− 1 + pµ−τ > 0 for all 1 > µ :=
1

1 + λp
> 0,

i.e., the characteristic equation (2.16) has no roots when 1 > µ > 0. Further, the

characteristic equation (2.16) has no roots in the case µ ≥ 1 either since p ∈ R+. As

a result, the characteristic equation (2.16) has no positive roots. Therefore,

Theorem 2.2.5 (i) extends (Ladas et al., 1989a, Theorem 1) to equations with a

variable coefficient.

Remark 5. Theorem 2.2.5 (ii) improves Theorem 2.2.1 (ii). To show this, suppose that
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p(n) ≤ ττ

(τ+1)τ+1 for all large n. Then, we estimate that

1

λ0

n∏
j=n−τ

[1 + λ0p(j)] ≤
1

λ0

(
1 +

λ0

τ + 1

n∑
j=n−τ

p(j)

)τ+1

≤ 1

λ0

(
1 +

λ0

τ + 1

n∑
j=n−τ

p(j)

)τ+1∣∣∣∣∣
λ0→ τ+1

τ
1∑n

j=n−τ
p(j)

=

(
τ + 1

τ

)τ n∑
j=n−τ

p(j)

≤
(
τ + 1

τ

)τ n∑
j=n−τ

τ τ

(τ + 1)τ+1
= 1

for all large n. Thus, (2.11) implies (2.29).

From the proof in Remark 5, we can give the following corollary of

Theorem 2.2.5 (ii).

Corollary 2.2.5.1. Assume that

n∑
j=n−τ

p(j) ≤
(

τ

τ + 1

)τ

for all large n.

Then, Eq. (1.3) has a nonoscillatory solution.

Below, we give four examples to illustrate that Theorem 2.2.5 (i) and

Theorem 2.2.5 (ii) cannot be compared with Theorem 2.2.4 (i) and Theorem 2.2.4 (ii),

respectively. The following example includes a numerical equation, where

Theorem 2.2.4 (i) applies but Theorem 2.2.5 (i) fails.

Example 9. Consider the equation

x(n+1)−x(n)+


17

64
, 0 ≡ n (mod 2)

5

64
, 1 ≡ n (mod 2)

x(n−2) = 0 for n = 0, 1, · · · . (2.39)
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We compute that

lim inf
n→∞

inf
λ≥1

{
1

λ

n∏
j=n−2

[1 + λp(j)]

}

= lim inf
n→∞

inf
λ≥1


1

λ

(
1 + λ

17

64

)2(
1 + λ

5

64

)
, 0 ≡ n (mod 2)

1

λ

(
1 + λ

17

64

)(
1 + λ

5

64

)2

, 1 ≡ n (mod 2)


= lim inf

n→∞


1

λ

(
1 + λ

17

64

)2(
1 + λ

5

64

)∣∣∣∣
λ→ 16

85
(
√
969−17)

, 0 ≡ n (mod 2)

1

λ

(
1 + λ

17

64

)(
1 + λ

5

64

)2∣∣∣∣
λ→ 16

85
(705−5)

, 1 ≡ n (mod 2)


= lim inf

n→∞


3

2560

(
537 + 19

√
969
)
, 0 ≡ n (mod 2)

3

8704

(
1329 + 47

√
705
)
, 1 ≡ n (mod 2)


≈ lim inf

n→∞


1.3224, 0 ≡ n (mod 2)

0.88819, 1 ≡ n (mod 2)

 = 0.88819 ̸> 1.

Thus, Theorem 2.2.5 (i) does not apply for Eq. (2.39). On the other hand, we have

Λ := (0, 64
17
) and compute that

lim inf
n→∞

inf
λ∈Λ

{
1

λ
∏n−1

j=n−2[1− λp(j)]

}
= lim inf

n→∞
inf

0<λ< 64
17

{
1

λ
(
1− λ17

64

)(
1− λ 5

64

)}

=
1

λ
(
1− λ17

64

)(
1− λ 5

64

)∣∣∣∣∣
λ→ 64

255
(22−

√
229)

=
195075

128
(
229

√
229− 2233

) ≈ 1.23 > 1.

This shows that Theorem 2.2.4 (i) applies for Eq. (2.39), i.e., every solution of Eq. (2.39)

is oscillatory.

The following example includes a numerical equation, where Theorem 2.2.5 (i)

applies but Theorem 2.2.4 (i) fails.

24



Example 10. Consider the equation

x(n+1)−x(n)+


35

128
, 0 ≡ n (mod 2)

61

265
, 1 ≡ n (mod 2)

x(n−1) = 0 for n = 0, 1, · · · . (2.40)

Note that Λ := (0, 128
35
) and we compute

lim inf
n→∞

inf
λ∈Λ

{
1

λ
∏n−1

j=n−1[1− λp(j)]

}

= lim inf
n→∞

inf
0<λ< 128

35


1

λ
(
1− 61

265
λ
) , 0 ≡ n (mod 2)

1

λ
(
1− 35

128
λ
) , 1 ≡ n (mod 2)



= lim inf
n→∞


1

λ
(
1− 61

265
λ
)∣∣∣∣∣

λ→ 128
61

, 0 ≡ n (mod 2)

1

λ
(
1− 35

128
λ
)∣∣∣∣∣

λ→ 64
35

, 1 ≡ n (mod 2)


= lim inf

n→∞


61

64
, 0 ≡ n (mod 2)

35

32
, 1 ≡ n (mod 2)

 =
61

64
̸> 1

Thus, Theorem 2.2.4 (i) does not apply for Eq. (2.40). On the other hand, the estimation

lim inf
n→∞

inf
λ≥1

{
1

λ

n∏
j=n−1

[1 + λp(j)]

}
= lim inf

n→∞
inf
λ≥1

{
1

λ

(
1 +

61

265
λ

)(
1 +

35

128
λ

)}

=
1

λ

(
1 +

61

265
λ

)(
1 +

35

128
λ

)∣∣∣∣
λ→12

√
2

2135

=
1

256

(
131 + 2

√
4270

)
≈ 1.02223 > 1

showing that Theorem 2.2.5 (i) applies for Eq. (2.40), i.e., every solution of Eq. (2.40)

is oscillatory.

The following example includes a numerical equation, where Theorem 2.2.4 (ii)

applies but Theorem 2.2.5 (ii) fails.
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Example 11. Consider the equation

x(n+1)−x(n)+


57

256
, 0 ≡ n (mod 2)

5

128
, 1 ≡ n (mod 2)

x(n−2) = 0 for n = 0, 1, · · · . (2.41)

We compute that

1

λ

n∏
j=n−2

[1 + λp(j)] =


1

λ

(
1 +

5

128
λ

)(
1 +

57

256
λ

)2

, 0 ≡ n (mod 2)

1

λ

(
1 +

5

128
λ

)2(
1 +

57

256
λ

)
, 1 ≡ n (mod 2)


≥


1

λ

(
1 +

5

128
λ

)(
1 +

57

256
λ

)2∣∣∣∣
λ→ 32

285
(
√
7809−57)

, 0 ≡ n (mod 2)

1

λ

(
1 +

5

128
λ

)2(
1 +

57

256
λ

)∣∣∣∣
λ→ 64

285
(
√
1165−5)

, 1 ≡ n (mod 2)


=


8951 + 137

√
7809

20480
, 0 ≡ n (mod 2)

9323 + 233
√
1165

29184
, 1 ≡ n (mod 2)


≈


1.0282, 0 ≡ n (mod 2)

0.591961, 1 ≡ n (mod 2)

 ̸≤ 1

for all λ ≥ 1. That is, Theorem 2.2.5 (ii) does not apply for Eq. (2.41). On the other

hand, we see that Λ := (0, 256
57
), and with λ0 :=

17
8
, we have

1

λ0

∏n−1
j=n−τ [1− λ0p(j)]

=
1

17
8

(
1− 17

8
57
256

)(
1− 17

8
5

128

) =
16777216

17224077
≤ 1

for n = 0, 1, · · · . By Theorem 2.2.4 (ii), Eq. (2.41) has a nonoscillatory solution.

The following example includes a numerical equation, where Theorem 2.2.5 (ii)

applies but Theorem 2.2.4 (ii) fails.
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Example 12. Consider the equation

x(n+1)−x(n)+


17

64
, 0 ≡ n (mod 3)

5

64
, 0 ̸≡ n (mod 3)

x(n−2) = 0 for n = 0, 1, · · · . (2.42)

Clearly, Λ := (0, 64
17
) and

1

λ
∏n−1

j=n−2[1− λp(j)]
=


1

λ
(
1− λ 5

64

)2 , 0 ≡ n (mod 3)

1

λ
(
1− λ 5

64

)(
1− λ17

64

) , 0 ̸≡ n (mod 3)



≥


1

λ
(
1− λ 5

64

)2
∣∣∣∣∣
λ→ 64

17

, 0 ≡ n (mod 3)

1

λ
(
1− λ 5

64

)(
1− λ17

64

)∣∣∣∣∣
λ→ 64

255
(22−

√
229)

, 0 ̸≡ n (mod 3)


=


4913

9216
, 0 ≡ n (mod 3)

195075

128
(
229

√
229− 2233

) , 0 ̸≡ n (mod 3)


≈


0.533, 0 ≡ n (mod 3)

1.237, 0 ̸≡ n (mod 3)

 ̸≤ 1

for all λ ≥ 1. This shows that Theorem 2.2.4 (ii) does not apply for Eq. (2.42).

However, with λ0 := 5, we compute that

1

λ0

n∏
j=n−2

[1 + λ0p(j)] =
1

5

(
1 + 5

17

64

)(
1 + 5

5

64

)2

≈ 0.9 ≤ 1 for n = 0, 1, · · · .

Thus, Theorem 2.2.5 (ii), Eq. (2.42) has a nonoscillatory solution.
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CHAPTER THREE

THE ORIGINAL RESULT

In this section, we state our new result on the oscillation of (1.3) and lemmas, which

are required in the proof of the our main result Theorem 3.0.1. The connection between

these three lemmas are interesting on their own.

Theorem 3.0.1. Assume that there exists ℓ ∈ N such that

lim inf
n→∞

βℓ(n) > 1, (3.1)

where

βk(n) :=


1, k = 0

inf
λ≥1

{
1

λ

n∏
j=n−τ

[
1 + λβk−1(j)p(j)

]}
, k ∈ N.

(3.2)

Then, every solution of (1.3) oscillates.

Remark 6. Theorem 3.0.1 with ℓ = 1 covers Theorem 2.2.5 (i).

3.1 Preparatory Results

Lemma 3.1.1. If (1.3) has a nonoscillatory solution, then

n∑
j=n−τ

p(j) < 1 for all large n. (3.3)

Proof. The claim follows from Theorem 2.2.2.

Lemma 3.1.2. Assume

lim sup
n→∞

n∑
j=n−τ

p(j) < ∞ (3.4)

and

lim
n→∞

(
p(n)

n−1∑
j=n−τ

p(j)

)
= 0. (3.5)
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Then,

lim sup
n→∞

βk(n) ≤
(
lim sup
n→∞

n∑
j=n−τ

p(j)

)k

for k ∈ N. (3.6)

Proof. It follows from (3.5) that

lim
n→∞

(
p(n)p(n− j)

)
= 0 for j = 1, 2, · · · , τ. (3.7)

By expanding the product in (3.2), we write

βk(n) = inf
λ≥1

{
1

λ

(
1 + λ

n∑
j=n−τ

βk−1(j)p(j) + λ2

n−1∑
j=n−τ

βk−1(j)p(j)

×
n∑

i=j+1

βk−1(i)p(i) + · · ·+ λτ+1

n∏
j=n−τ

βk−1(j)p(j)

)} (3.8k)

for all large n. From (3.7) and (3.8) with k = 1, we see that

β1(n) = inf
λ≥1

{
1

λ
+

n∑
j=n−τ

p(j) + o(1)(λ+ · · ·+ λτ )

}
for all large n, (3.9)

where o is the so-called “little-o notation”meaning that the coefficients of λ, λ2, · · · , λτ

tend to 0 as n → ∞. It follows from (3.4) and (3.9) that

lim sup
n→∞

β1(n) ≤ lim sup
n→∞

n∑
j=n−τ

p(j) =: M, (3.10)

i.e., {β1(n)} is bounded. From (3.7), (3.8) with k = 2 and (3.10), we see that

β2(n) = inf
λ≥1

{
1

λ
+

n∑
j=n−τ

β1(j)p(j) + o(1)(λ+ · · ·+ λτ )

}
for all large n. (3.11)

It follows from (3.10) and (3.11) that

lim sup
n→∞

β2(n) ≤ lim sup
n→∞

n∑
j=n−τ

β1(j)p(j) ≤ M lim sup
n→∞

n∑
j=n−τ

p(j) ≤ M2, (3.12)

i.e., {β2(n)} is bounded. By induction, we obtain lim supn→∞ βk(n) ≤ Mk for k ∈ N,

which proves (3.6).
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Lemma 3.1.3. Let {x(n)} be a nonoscillatory solution of (1.3). If

lim sup
n→∞

(
p(n)

n−1∑
j=n−τ

p(j)

)
> 0, (3.13)

then

lim inf
n→∞

x(n− τ)

x(n+ 1)
< ∞.

Proof. Without loss of generality, assume that x(n), x(n− τ) > 0 for n ≥ N1, where

N1 ∈ N is sufficiently large. Then, {x(n)} is nonincreasing on {N1, N1 + 1, · · · }. In

view of (3.13), there exist an increasing divergent sequence {nk} ⊂ {N1, N1+1, · · · }

and a constant ε > 0 such that

p(nk)

nk−1∑
j=nk−τ

p(j) ≥ ε for all k ∈ N. (3.14)

It follows from (1.3) that

x(nk) > x(nk)− x(nk + 1) = p(nk)x(nk − τ) for all k ∈ N. (3.15)

Also, from (1.3), we have

x(nk − τ) > x(nk − τ)− x(nk) = −
nk−1∑

j=nk−τ

[x(j + 1)− x(j)]

=

nk−1∑
j=nk−τ

p(j)x(j − τ) ≥
nk−1∑

j=nk−τ

p(j)x(nk − 1− τ) (3.16)

for all k ∈ N. Combining (3.14), (3.15) and (3.16) yields

x(nk − 1− τ)

x(nk)
<

1

p(nk)
∑nk−1

j=nk−τ p(j)
≤ 1

ε
for all k ∈ N,

which completes the proof.
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CHAPTER FOUR

THE PROOF

Proof of Theorem 3.0.1. Assume the contrary that {x(n)} is an nonoscillatory solution

of (1.3). Without loss of generality, we suppose that {x(n)} is eventually positive.

Then, there exists N1 ∈ N such that x(n) and x(n − τ) are positive for n ≥ N1. By

(1.3), {x(n)} is a nonincreasing sequence on {N1, N1+1, · · · }. Definew(n) := x(n−τ)
x(n+1)

for n ≥ N1. Note that w(n) ≥ 1 for n ≥ N1. From (1.3), we write

x(n+ 1)− x(n) + w(n)p(n)x(n+ 1) = 0 for n ≥ N1,

which yields

w(n) =
n∏

j=n−τ

[
1 + w(j)p(j)

]
for n ≥ N2, (4.1)

where N2 := N1 + τ . Now, we define

zk(n) :=

w(n), k = 0

min{zk−1(j) : j = n− τ, n− τ + 1, · · · , n}, k = 1, 2, · · · , ℓ
(4.2)

for n ≥ N2. By (4.1), (4.2) with k = 1 and w(n) ≥ 1 for n ≥ N2, it follows that

z1(n) ≥ 1 for n ≥ N3, where N3 := N2 + τ . By (3.2) with k = 1,

w(n) ≥
n∏

j=n−τ

[1 + z1(n)p(j)]

=

(
1

z1(n)

n∏
j=n−τ

[1 + z1(n)p(j)]

)
z1(n)

≥ β1(n)z1(n)
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for n ≥ N3. From (4.1) and (4.2) with k = 2, we know that z2(n) ≤ z1(n) for n ≥ N4,

and by definition z2(n) ≥ 1 for n ≥ N4, where N4 := N3 + τ . By (3.2) with k = 2,

w(n) ≥
n∏

j=n−τ

[1 + z1(j)β1(j)p(j)]

≥
n∏

j=n−τ

[1 + z2(n)β1(j)p(j)]

=

(
1

z2(n)

n∏
j=n−τ

[1 + z2(n)β1(j)p(j)]

)
z2(n)

≥ β2(n)z2(n)

for n ≥ N4. By induction, it follows from (3.2) with k = ℓ, (4.1) and (4.2) with k = ℓ

that

w(n) ≥ βℓ(n)zℓ(n) for n ≥ N5. (4.3)

where N5 := N4 + ℓτ . By Lemma 3.1.1, Lemma 3.1.2 and Lemma 3.1.3, we obtain

ω∗ := lim infn→∞ w(n) < ∞. Note that lim infn→∞ zℓ(n) = ω∗. Thus, taking inferior

limits on both sides of (4.3), we get

w∗ ≥ lim inf
n→∞

βℓ(n) lim inf
n→∞

zℓ(n)

= lim inf
n→∞

βℓ(n)w∗,

which yields lim infn→∞ βℓ(n) ≤ 1 contradicting (3.1). This completes the proof.

In the example below, we will show the importance of Theorem 3.0.1, where

Theorem 2.2.1, Theorem 2.2.3, Theorem 2.2.4 and Theorem 2.2.5 cannot deliver an

answer on the oscillatory behavior of solutions but Theorem 3.0.1 applies and gives a

positive answer.
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Example 13. Consider the equation

x(n+ 1)− x(n) +



15
100

, 0 ≡ n (mod 4)

17
100

, 1 ≡ n (mod 4)

14
100

, 2 ≡ n (mod 4)

15
100

, 3 ≡ n (mod 4)


x(n− 2) = 0 for n = 0, 1, · · · . (4.4)

• We have Λ := (0, 100
17
), which is defined in (2.23), and

1

λ
∏n−1

j=n−2[1− λp(j)]
=



1
λ(1−λ 15

100
)(1−λ 14

100
)
, 0 ≡ n (mod 4)

1
λ(1−λ 15

100
)2
, 1 ≡ n (mod 4)

1
λ(1−λ 17

100
)(1−λ 15

100
)
, 2 ≡ n (mod 4)

1
λ(1−λ 14

100
)(1−λ 17

100
)
, 3 ≡ n (mod 4)

for n = 0, 1, · · · . Simply, we compute

inf
λ∈(0, 100

17
)

{
1

λ(1− λ 15
100

)(1− λ 14
100

)

}
=

1

λ(1− λ 15
100

)(1− λ 14
100

)

∣∣∣∣
λ→ 10

63
(29−

√
211)

=
1

50

(
211

√
211− 3016

)
≈ 98

100
̸> 1,

which shows that Theorem 2.2.4 (i) fails. This implies that Theorem 2.2.1 (i) and

Theorem 2.2.3 also cannot apply.

• We have

1

λ

n∏
j=n−2

[1 + λp(j)] =



1
λ
(1 + λ 15

100
)2(1 + λ 14

100
), 0 ≡ n (mod 4)

1
λ
(1 + λ 17

100
)(1 + λ 15

100
)2, 1 ≡ n (mod 4)

1
λ
(1 + λ 14

100
)(1 + λ 17

100
)(1 + λ 15

100
), 2 ≡ n (mod 4)

1
λ
(1 + λ 15

100
)(1 + λ 14

100
)(1 + λ 17

100
), 3 ≡ n (mod 4)
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for n = 0, 1, · · · . Simply, we compute

inf
λ≥1

{
1

λ

(
1 + λ

15

100

)2(
1 + λ

14

100

)}
≈ 1

λ

(
1 + λ

15

100

)2(
1 + λ

14

100

)∣∣∣∣
λ→ 341

100

≈ 99

100
̸> 1,

which shows that Theorem 2.2.5 fails too.

• First, we compute

β1(n) = inf
λ≥1

{
1

λ

n∏
j=n−2

[1 + λp(j)]

}

≈



1
λ
(1 + λ 15

100
)2(1 + λ 14

100
)
∣∣
λ→ 341

100

, 0 ≡ n (mod 4)

1
λ
(1 + λ 17

100
)(1 + λ 15

100
)2
∣∣
λ→ 319

100

, 1 ≡ n (mod 4)

1
λ
(1 + λ 14

100
)(1 + λ 17

100
)(1 + λ 15

100
)
∣∣
λ→ 327

100

, 2 ≡ n (mod 4)

1
λ
(1 + λ 15

100
)(1 + λ 14

100
)(1 + λ 17

100
)
∣∣
λ→ 327

100

, 3 ≡ n (mod 4)

≈



99
100

, 0 ≡ n (mod 4)

106
100

, 1 ≡ n (mod 4)

103
100

, 2 ≡ n (mod 4)

103
100

, 3 ≡ n (mod 4)

34



for n = 0, 1, · · · . Next, we compute

β2(n) = inf
λ≥1

{
1

λ

n∏
j=n−2

[
1 + λβ1(j)p(j)

]}

≈



1
λ
(1 + λ 99

100
15
100

)(1 + λ103
100

15
100

)(1 + λ103
100

14
100

)
∣∣
λ→ 336

100

, 0 ≡ n (mod 4)

1
λ
(1 + λ106

100
17
100

)(1 + λ 99
100

15
100

)(1 + λ103
100

15
100

)
∣∣
λ→ 311

100

, 1 ≡ n (mod 4)

1
λ
(1 + λ103

100
14
100

)(1 + λ106
100

17
100

)(1 + λ 99
100

15
100

)
∣∣
λ→ 318

100

, 2 ≡ n (mod 4)

1
λ
(1 + λ103

100
15
100

)(1 + λ103
100

14
100

)(1 + λ106
100

17
100

)
∣∣
λ→ 314

100

, 3 ≡ n (mod 4)

≈



101
100

, 0 ≡ n (mod 4)

109
100

, 1 ≡ n (mod 4)

106
100

, 2 ≡ n (mod 4)

108
100

, 3 ≡ n (mod 4)

for n = 0, 1, · · · . This yields lim infn→∞ β2(n) =
101
100

> 1, i.e., Theorem 3.0.1 applies

with ℓ = 2.

Therefore, every solution of (4.4) is oscillatory.
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CHAPTER FIVE

CONCLUSIONS

In the literature, there exist other iterative tests for the oscillation of solutions of

delay difference equations. In this direction, we quote below one of the first important

results by X.H. Tang and J. S. Yu.

Theorem 5.0.1 ((Tang & Yu, 1999b, Corollary 1)). Assume that there exists ℓ ∈ N

such that

lim inf
n→∞

pℓ(n) >

(
τ

τ + 1

)ℓ(τ+1)

(5.1)

where

pk(n) :=


1, k = 0
n+τ∑

j=n+1

pk−1(j)p(j), k ∈ N.

Then, every solution of (1.3) oscillates.

Proof. By Theorem 2.2.2, we know that p1(n) < 1 for all large n. Then,

lim inf
n→∞

pi(n) ≤ lim inf
n→∞

p1(n), for i = 1, 2, · · · .

This shows by (5.1) that

∞∑
j=0

p(j) = p(0) +
∞∑
k=0

p1(kτ) = ∞, (5.2)

and there exists ε > 0 such that

(
τ + 1

τ

)ℓ(
pℓ(n)

) 1
τ+1 − 1 ≥ ε for all large n. (5.3)

Thus, (5.2) and (5.3) imply that

∞∑
j=0

p(j)

[(
τ + 1

τ

)ℓ(
pℓ(j)

) 1
τ+1 − 1

]
= ∞. (5.4)

By (Tang & Yu, 1999b, Theorem 1), every solution of (1.3) is oscillatory.
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Remark 7. Recall that Theorem 5.0.1 includes Theorem 2.2.3 with ℓ = 1.

Next, we quote a special case of another iterative result by M. Bohner, B. Karpuz

and Ö. Öcalan, which is extracted from Bohner et al. (2008) for the discrete time scale

nonnegative integers.

Theorem 5.0.2 (Cf. (Bohner et al., 2008, Theorem 2.3)). Assume that there exists ℓ ∈ N

such that

lim inf
n→∞

αℓ(n) > 1, (5.5)

where

αk(n) :=


1, k = 0

inf
λ∈Λk

{
1

λ
∏n−1

j=n−τ [1− λαk−1(j)p(j)]

}
, k ∈ N

and

Λk := {λ > 0 : 1− λαk−1(n)p(n) > 0 for all large n} for k ∈ N.

Then, every solution of (1.3) oscillates.

Proof. Assume the contrary that {x(n)} is an nonoscillatory solution of (1.3). Without

loss of generality, we suppose that {x(n)} is eventually positive. Then, there exists

N1 ∈ N such that x(n + 1), x(n) and x(n − τ) are positive for n ≥ N1. By (1.3),

{x(n)} is a nonincreasing sequence on {N1, N1 + 1, · · · }. Define w(n) := x(n−τ)
x(n)

for

n ≥ N1,. We rewrite (1.3) in the following form

x(n+ 1)− x(n) + w(n)p(n)x(n) = 0 for n ≥ N1, (5.6)

Then, we have

0 = x(n+ 1)− x(n) + w(n)p(n)x(n)

> − x(n)[1− w(n)p(n)],
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which implies w(n)p(n) < 1. From (5.6), we see that

w(n) =
1∏n−1

j=n−τ

[
1− w(j)p(j)

] for n ≥ N2, (5.7)

where N2 := N1 + τ . Now, we define

zk(n) :=

w(n), k = 0

min{zk−1(j) : j = n− τ, n− τ + 1, · · · , n}, k = 1, 2, · · · , ℓ
(5.8)

for n ≥ N2. By (5.7), (5.8) with k = 1 for n ≥ N2, it follows that w(n) ≥ z1(n) for

n ≥ N2. Thus z1(n) ∈ Λ1 for n ≥ N3, where N3 := N2 + τ . Thus,

w(n) ≥ 1∏n−1
j=n−τ [1− z1(n)p(j)]

=
z1(n)

z1(n)
∏n−1

j=n−τ [1− z1(n)p(j)]

≥ α1(n)z1(n)

for n ≥ N3. From (5.6), we get

0 ≥ x(n+ 1)− x(n) + z1(n)α1(n)p(n)x(n)

> − x(n)[1− z1(n)α1(n)p(n)],

which implies that z1(n)α1(n)p(n) < 1 for n ≥ N3, i.e., z1(n) ∈ Λ2 for n ≥ N3. From

(5.7) and (5.8) with k = 2, since z2(n) ≤ z1(n) for n ≥ N4, we have, z2(n) ∈ Λ2 for

n ≥ N4, where N4 := N3 + τ . Thus,

w(n) ≥ 1∏n−1
j=n−τ [1− z1(n)α1(j)p(j)]

≥ 1∏n−1
j=n−τ [1− z2(n)α1(j)p(j)]

=
z2(n)

z2(n)
∏n−1

j=n−τ [1− z2(n)α1(j)p(j)]

≥ α2(n)z2(n)
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for n ≥ N4. By induction, it follows from (5.7) and (5.8) with k = ℓ that

w(n) ≥ αℓ(n)zℓ(n) for n ≥ N5. (5.9)

whereN5 := N4+ℓτ . From Lemma 3.1.3, taking inferior limits on both sides of (5.9),

we get

lim inf
n→∞

w(n) ≥ lim inf
n→∞

[αℓ(n)zℓ(n)]

≥ lim inf
n→∞

αℓ(n) lim inf
n→∞

zℓ(n)

= lim inf
n→∞

αℓ(n) lim inf
n→∞

w(n), (5.10)

which yields lim infn→∞ αℓ(n) ≤ 1 contradicting (5.5). This completes the proof.

Remark 8. Theorem 5.0.1 and Theorem 5.0.2 are not comparable.

Example 14. Consider the difference equation

x(n+1)−x(n)+


1345
16384

, 0 ≡ n (mod 3)

209
2560

, 1 ≡ n (mod 3)

205
2496

, 2 ≡ n (mod 3)


x(n−4) = 0 for n = 0, 1, · · · . (5.11)

We compute that

p1(n) =


1046339
3194880

≈ 0.327505, 0 ≡ n (mod 3)

1047907
3194880

≈ 0.327996, 1 ≡ n (mod 3)

523891
1597440

≈ 0.327957, 2 ≡ n (mod 3)


for n = 0, 1, · · ·

p2(n) =


1096021915273
10207258214400

≈ 0.107377, 0 ≡ n (mod 3)

1097632233449
10207258214400

≈ 0.107534, 1 ≡ n (mod 3)

548561398937
5103629107200

≈ 0.107485, 2 ≡ n (mod 3)


for n = 0, 1, · · · ,
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which shows that

lim inf
n→∞

p2(n) = 0.107377 >

(
4

4 + 1

)2(4+1)

≈ 0.107374.

That is, every solution of (5.11) oscillates by Theorem 5.0.1.

On the other hand, we compute

α1(n) = inf
λ∈(0, 2496

205
)

{
1

λ
∏n−1

j=n−τ [1− λp(j)]

}

= inf
λ∈(0, 2496

205
)


1

λ(1−λ 205
2496

)2(1−λ 1345
16384

)(1−λ 209
2560

)
, 0 ≡ n (mod 3)

1
λ(1−λ 205

2496
)(1−λ 1345

16384
)2(1−λ 209

2560
)
, 1 ≡ n (mod 3)

1
λ(1−λ 205

2496
)(1−λ 1345

16384
)(1−λ 209

2560
)2
, 2 ≡ n (mod 3)



=


1.00096, 0 ≡ n (mod 3)

1.00084, 1 ≡ n (mod 3)

0.999467, 2 ≡ n (mod 3)


̸> 1 for n = 0, 1, · · ·

α2(n) ≈ inf
λ∈(0,12.1697)

{
1

λ
∏n−1

j=n−τ [1− λα1(j)p(j)]

}

≈ inf
λ∈(0,12.1697)


1

λ(1−λ0.0821714)(1−λ0.0820876)2(1−λ0.0817096)
, 0 ≡ n (mod 3)

1
λ(1−λ0.0821714)2(1−λ0.0820876)(1−λ0.0817096)

, 1 ≡ n (mod 3)

1
λ(1−λ0.0821714)(1−λ0.0820876)(1−λ0.0817096)2

, 2 ≡ n (mod 3)



≈


1.00115, 0 ≡ n (mod 3)

1.0014, 1 ≡ n (mod 3)

0.999996, 2 ≡ n (mod 3)


̸> 1 for n = 0, 1, · · · ,

which shows that Theorem 5.0.2 fails.

Example 15. When ℓ = 1, Theorem 5.0.2 is better than Theorem 5.0.1 since

Theorem 2.2.4 is better than Theorem 2.2.3.

As the final sentence, we would like to mention that our main result Theorem 3.0.1
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complements Theorem 5.0.2 in a similar manner that Theorem 2.2.5 complements

Theorem 2.2.4.
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